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Preface

Nowadays, huge amount of multimedia data are being constantly generated in
various forms from various places around the world. With ever increasing com-
plexity and variability of multimedia data, traditional rule-based approaches
where humans have to discover the domain knowledge and encode it into a
set of programming rules are too costly and incompetent for analyzing the
contents, and gaining the intelligence of this glut of multimedia data.

The challenges in data complexity and variability have led to revolutions
in machine learning techniques. In the past decade, we have seen many new
developments in machine learning theories and algorithms, such as boosting,
regressions, Support Vector Machines, graphical models, etc. These develop-
ments have achieved great successes in a variety of applications in terms of the
improvement of data classification accuracies, and the modeling of complex,
structured data sets. Such notable successes in a wide range of areas have
aroused people’s enthusiasms in machine learning, and have led to a spate of
new machine learning text books. Noteworthily, among the ever growing list
of machine learning books, many of them attempt to encompass most parts
of the entire spectrum of machine learning techniques, resulting in a shallow,
incomplete coverage of many important topics, whereas many others choose
to dig deeply into a specific branch of machine learning in all aspects, result-
ing in excessive theoretical analysis and mathematical rigor at the expense of
loosing the overall picture and the usability of the books. Furthermore, despite
a large number of machine learning books, there is yet a text book dedicated
to the audience of the multimedia community to address unique problems and
interesting applications of machine learning techniques in this area.
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The objectives we set for this book are two-fold: (1) bring together those
important machine learning techniques that are particularly powerful and
effective for modeling multimedia data; and (2) showcase their applications
to common tasks of multimedia content analysis. Multimedia data, such as
digital images, audio streams, motion video programs, etc, exhibit much richer
structures than simple, isolated data items. For example, a digital image is
composed of a number of pixels that collectively convey certain visual content
to viewers. A TV video program consists of both audio and image streams that
complementally unfold the underlying story and information. To recognize the
visual content of a digital image, or to understand the underlying story of a
video program, we may need to label sets of pixels or groups of image and audio
frames jointly because the label of each element is strongly correlated with the
labels of the neighboring elements. In machine learning field, there are certain
techniques that are able to explicitly exploit the spatial, temporal structures,
and to model the correlations among different elements of the target problems.
In this book, we strive to provide a systematic coverage on this class of machine
learning techniques in an intuitive fashion, and demonstrate their applications
through various case studies.

There are different ways to categorize machine learning techniques. Chap-
ter 1 presents an overview of machine learning methods through four different
categorizations: (1) Unsupervised versus supervised; (2) Generative versus
discriminative; (3) Models for i.i.d. data versus models for structured data;
and (4) Model-based versus modeless. Each of the above four categorizations
represents a specific branch of machine learning methodologies that stem from
different assumptions/philosophies and aim at different problems. These cate-
gorizations are not mutually exclusive, and many machine learning techniques
can be labeled with multiple categories simultaneously. In describing these
categorizations, we strive to incorporate some of the latest developments in
machine learning philosophies and paradigms.

The main body of this book is composed of three parts: I. unsupervised
learning, II. Generative models, and III. Discriminative models. In Part I, we
present two important branches of unsupervised learning techniques: dimen-
sion reduction and data clustering, which are generic enabling tools for many
multimedia content analysis tasks. Dimension reduction techniques are com-
monly used for exploratory data analysis, visualization, pattern recognition,
etc. Such techniques are particularly useful for multimedia content analysis be-
cause multimedia data are usually represented by feature vectors of extremely
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high dimensions. The curse of dimensionality usually results in deteriorated
performances for content analysis and classification tasks. Dimension reduc-
tion techniques are able to transform the high dimensional raw feature space
into a new space with much lower dimensions where noise and irrelevant
information are diminished. In Chapter 2, we describe three representative
techniques: Singular Value Decomposition (SVD), Independent Component
Analysis (ICA), and Dimension Reduction by Locally Linear Embedding
(LLE). We also apply the three techniques to a subset of handwritten dig-
its, and reveal their characteristics by comparing the subspaces generated by
these techniques.

Data clustering can be considered as unsupervised data classification that
is able to partition a given data set into a predefined number of clusters based
on the intrinsic distribution of the data set. There exist a variety of data
clustering techniques in the literature. In Chapter 3, instead of providing a
comprehensive coverage on all kinds of data clustering methods, we focus on
two state-of-the-art methodologies in this field: spectral clustering, and clus-
tering based on non-negative matrix factorization (NMF). Spectral clustering
evolves from the spectral graph partitioning theory that aims to find the best
cuts of the graph that optimize certain predefined objective functions. The
solution is usually obtained by computing the eigenvectors of a graph affin-
ity matrix defined on the given problem, which possess many interesting and
preferable algebraic properties. On the other hand, NMF-based data cluster-
ing strives to generate semantically meaningful data partitions by exploring
the desirable properties of the non-negative matrix factorization. Theoretically
speaking, because the non-negative matrix factorization does not require the
derived factor-space to be orthogonal, it is more likely to generate the set of
factor vectors that capture the main distributions of the given data set.

In the first half of Chapter 3, we provide a systematic coverage on four
representative spectral clustering techniques from the aspects of problem for-
mulation, objective functions, and solution computations. We also reveal the
characteristics of these spectral clustering techniques through analytical ex-
aminations of their objective functions. In the second half of Chapter 3, we
describe two NMF-based data clustering techniques, which stem from our orig-
inal works in recent years. At the end of this chapter, we provide a case study
where the spectral and NMF clustering techniques are applied to the text
clustering task, and their performance comparisons are conducted through
experimental evaluations.
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In Part II and III, we focus on various graphical models that are aimed
to explicitly model the spatial, temporal structures of the given data set, and
therefore are particularly effective for modeling multimedia data. Graphical
models can be further categorized as either generative or discriminative. In
Part II, we provide a comprehensive coverage on generative graphical mod-
els. We start by introducing basic concepts, frameworks, and terminologies of
graphical models in Chapter 4, followed by in-depth coverages of the most ba-
sic graphical models: Markov Chains and Markov Random Fields in Chapter
5 and 6, respectively. In these two chapters, we also describe two important
applications of Markov Chains and Markov Random Fields, namely Markov
Chain Monte Carlo Simulation (MCMC) and Gibbs Sampling. MCMC and
Gibbs Sampling are the two powerful data sampling techniques that enable
us to conduct inferences for complex problems for which one can not ob-
tain closed-form descriptions of their probability distributions. In Chapter 7,
we present the Hidden Markov Model (HMM), one of the most commonly
used graphical models in speech and video content analysis, with detailed
descriptions of the forward-backward and the Viterbi algorithms for training
and finding solutions of the HMM. In Chapter 8, we introduce more general
graphical models and the popular algorithms such as sum-production, max-
product, etc. that can effectively carry out inference and training on graphical
models.

In recent years, there have been research works that strive to overcome
the drawbacks of generative graphical models by extending the models into
discriminative ones. In Part III, we begin with the introduction of the Con-
ditional Random Field (CRF) in Chapter 9, a pioneer work in this field.
In the last chapter of this book, we present an innovative work, Max-Margin
Markov Networks (M3-nets), which strives to combine the advantages of both
the graphical models and the Support Vector Machines (SVMs). SVMs are
known for their abilities to use high-dimensional feature spaces, and for their
strong theoretical generalization guarantees, while graphical models have the
advantages of effectively exploiting problem structures and modeling corre-
lations among inter-dependent variables. By implanting the kernels, and in-
troducing a margin-based objective function, which are the core ingredients
of SVMs, M3-nets successfully inherit the advantages of the two frameworks.
In Chapter 10, we first describe the concepts and algorithms of SVMs and
Kernel methods, and then provide an in-depth coverage of the M3-nets. At
the end of the chapter, we also provide our insights into why discriminative
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graphical models generally outperform generative models, and M3-nets are
generally better than discriminative models.

This book is devoted to students and researchers who want to apply ma-
chine learning techniques to multimedia content analysis. We assume that the
reader has basic knowledge in statistics, linear algebra, and calculus. We do
not attempt to write a comprehensive catalog covering the entire spectrum of
machine learning techniques, but rather to focus on the learning methods that
are powerful and effective for modeling multimedia data. We strive to write
this book in an intuitive fashion, emphasizing concepts and algorithms rather
than mathematical completeness. We also provide comments and discussions
on characteristics of various methods described in this book to help the reader
to get insights and essences of the methods. To further increase the usability
of this book, we include case studies in many chapters to demonstrate exam-
ple applications of respective techniques to real multimedia problems, and to
illustrate factors to be considered in real implementations.

California, U.S.A. Yihong Gong
May 2007 Wei Xu
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1

Introduction

The term machine learning covers a broad range of computer programs. In
general, any computer program that can improve its performance at some task
through experience (or training) can be called a learning program [1]. There
are two general types of learning: inductive, and deductive. Inductive learning
aims to obtain or discover general rules/facts from particular training exam-
ples, while deductive learning attempts to use a set of known rules/facts to
derive hypotheses that fit the observed training data. Because of its commer-
cial values and variety of applications, inductive machine learning has been
the focus of considerable researches for decades, and most machine learning
techniques in the literature fall into the inductive learning category. In this
book, unless otherwise notified, the term machine learning will be used to
denote inductive learning.

During the early days of machine learning research, computer scientists
developed learning algorithms based on heuristics and insights into human
reasoning mechanisms. Many early works modeled the learning problem as
a hypothesis search problem where the hypothesis space is searched through
to find the hypothesis that best fits the training examples. Representative
works include concept learning, decision trees, etc. On the other hand, neuro-
scientists attempted to devise learning methods by imitating the structure of
human brains. Various types of neural networks are the most famous achieve-
ment from such endeavors.

Along the course of machine learning research, there are several major
developments that have brought significant impacts on, and accelerated evo-
lutions of the machine learning field. The first such development is the merging
of research activities between statisticians and computer scientists. This has
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resulted in mathematical formulations of machine learning techniques using
statistical and probabilistic theories. A second development is the significant
progress in linear and nonlinear programming algorithms which have dramat-
ically enhanced our abilities to optimize complex and large-scale problems. A
third development, less relevant but still important, is the dramatic increase
in computing power which has made many complex, heavy weight train-
ing/optimaization algorithms computationally possible and feasible. Com-
pared to early stages of machine learning techniques, recent methods are more
theoretic instead of heuristic, reply more on modern numerical optimization
algorithms instead of ad hoc search, and consequently, produce more accurate
and powerful inference results.

As most modern machine learning methods are either formulated using,
or can be explained by statistical/probabilisic theories, in this book, our main
focus will be devoted to statistical learning techniques and relevant theo-
ries. This chapter provides an overview of machine learning techniques and
shows the strong relevance between typical multimedia content analysis and
machine learning tasks. The overview of machine learning techniques is pre-
sented through four different categorizations, each of which characterizes the
machine learning techniques from a different point of view.

1.1 Basic Statistical Learning Problems

Statistical learning techniques generally deal with random variables and their
probabilities. In this book, we will use uppercase letters such as X, Y , or Z to
denote random variables, and use lowercase letters to denote observed values
of random variables. For example, the i’th observed value of the variable X

is denoted as xi. If X is a vector, we will use the bold lowercase letter x to
denote its values. Bold uppercase letters (i.e., A, B, C) are used to represent
matrices.

In real applications, most learning tasks can be formulated as one of the
following two problems.

Regression: Assume that X is an input (or independent) variable, and that
Y is an output (or dependent) variable. Infer a function f(X) so that
given a value x of the input variable X, ŷ = f(x) is a good prediction of
the true value y of the output variable Y .

Classification: Assume that a random variable X can belong to one of a
finite set of classes C = {1, 2, . . . ,K}. Given the value x of variable X,
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infer its class label l = g(x), where l ∈ C. It is also of great interest to
estimate the probability P (k|x) that X belongs to class k, k ∈ C.

In fact both the regression and classification problems in the above list can
be formulated using the same framework. For example, in the classification
problem, if we treat the random variable X as an independent variable, use
a variable L (a dependent variable) to represent X’s class label, L ∈ C, and
think of the function g(X) as a regression function, then it becomes equivalent
to the regression problem. The only difference is that in regression Y takes
continuous, real values, while in classification L takes discrete, categorical
values.

Despite the above equivalence, quite different loss functions and learning
algorithms, however, have been employed/devised to tackle each of the two
problems. Therefore, in this book, to make the descriptions less confused,
we choose to clearly distinguish the two problems, and treat the learning
algorithms for the two problems separately.

In real applications, regression techniques can be applied to a variety of
problems such as:

• Predict a person’s age given one or more face images of the person.
• Predict a company’s stock price in one month from now, given both the

company’s performances measures and the macro economic data.
• Estimate tomorrow’s high and low temperatures of a particular city, given

various meteorological sensor data of the city.

On the other hand, classification techniques are useful for solving the following
problems:

• Detect human faces from a given image.
• Predict the category of the object contained in a given image.
• Detect all the home run events from a given baseball video program.
• Predict the category of a given video shot (news, sport, talk show, etc).
• Predict whether a cancer patient will die or survive based on demographic,

living habit, and clinical measurements of that patient.

Besides the above two typical learning problems, other problems, such as
confidence interval computing and hypothesis testing, have been also among
the main topics in the statistical learning literature. However, as we will not
cover these topics in this book, we omit their descriptions here, and recom-
mend interested readers to additional reading materials in [1, 2].
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1.2 Categorizations of Machine Learning Techniques

In this section, we present an overview of machine learning techniques
through four different categorizations. Each categorization represents a spe-
cific branch of machine learning methodologies that stem from different as-
sumptions/philosophies and aim at different problems. These categorizations
are not mutually exclusive, and many machine learning techniques can be
labeled with multiple categories simultaneously.

1.2.1 Unsupervised vs. Supervised

In Sect. 1.1, we described two basic learning problems: regression and classifi-
cation. Regression aims to infer a function ŷ = f(x) that is a good prediction
of the true value y of the output variable Y given a value x of the input vari-
able X, while classification attempts to infer a function l = g(x) that predicts
the class label l of the variable X given its value x. For inferring the functions
f(x) and g(x), if pairs of training data (xi, yi) or (xi, li), i = 1, . . . , N are
available, where yi is the observed value of the output variable Y given the
value xi of the input variable X, li is the true class label of the variable X

given its value xi, then the inference process is called a supervised learning
process; otherwise, it is called a unsupervised learning process.

Most regression methods are supervised learning methods. Conversely,
there are many supervised as well as unsupervised classification methods in the
literature. Unsupervised classification methods strive to automatically parti-
tion a given data set into the predefined number of clusters based on the
analysis of the intrinsic data distribution of the data set. Normally no train-
ing data are required by such methods to conduct the data partitioning task,
and some methods are even able to automatically guess the optimal number
of clusters into which the given data set should be partitioned. In the machine
learning field, we use a special name clustering to refer to unsupervised clas-
sification methods. In Chap. 3, we will present two types of data clustering
techniques that are the state of the art in this field.

1.2.2 Generative Models vs. Discriminative Models

This categorization is more related to statistical classification techniques that
involve various probability computations.

Given a finite set of classes C = {1, 2, . . . ,K} and an input data x, proba-
bilistic classification methods typically compute the probabilities P (k|x) that
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x belongs to class k, where k ∈ C, and then classify x into the class l that has
the highest conditional probability l = arg maxk P (k|x). In general, there are
two ways of learning P (k|x): generative and discriminative. Discriminative
models strive to learn P (k|x) directly from the training set without the at-
tempt to modeling the observation x. Generative models, on the other hand,
compute P (k|x) by first modeling the class-conditional probabilities P (x|k)
as well as the class probabilities P (k), and then applying the Bayes’ rule as
follows:

P (k|x) ∝ P (x|k)P (k) . (1.1)

Because P (x|k) can be interpreted as the probability of generating the obser-
vation x by class k, classifiers exploring P (x|k) can be viewed as modeling how
the observation x is generated, which explains the name ”generative model”.

Popular generative models include Naive Bayes, Bayesian Networks,
Gaussian Mixture Models (GMM), Hidden Markov Models (HMM), etc, while
representative discriminative models include Neural Networks, Support Vec-
tor Machines (SVM), Maximum Entropy Models (MEM), Conditional Ran-
dom Fields (CRF), etc. Generative models have been traditionally popular for
data classification tasks because modeling P (x|k) is often easier than mod-
eling P (k|x), and there exist well-established, easy-to-implement algorithms
such as the EM algorithm [3] and the Baum-Welch algorithm [4] to efficiently
estimate the model through a learning process. The ease of use, and the the-
oretical beauty of generative models, however, do come with a cost. Many
complex data entities, such as a beach scene, a home run event, etc, need to
be represented by a vector x of many features that depend on each other. To
make the model estimation process tractable, generative models commonly as-
sume conditional independence among all the features comprising the feature
vector x. Because this assumption is for the sake of mathematical convenience
rather than the reflection of a reality, generative models often have limited
performance accuracies for classifying complex data sets. Discriminative mod-
els, on the other hand, typically make very few assumptions about the data
and the features, and in a sense, let the data speak for themselves. Recent re-
search studies have shown that discriminative models outperform generative
models in many applications such as natural language processing, webpage
classifications, baseball highlight detections, etc.

In this book, Part II and III will be devoted to covering representative gen-
erative and discriminative models that are particularly powerful and effective
for modeling multimedia data, respectively.
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1.2.3 Models for Simple Data vs. Models for Complex Data

Many data entities have simple, flat structures that do not depend on other
data entities. The outcome of each coin toss, the weight of each apple, the
age of each person, etc are examples of such simple data entities. In contrast,
there exist complex data entities that consist of sub-entities that are strongly
related one to another. For example, a beach scene is usually composed of a
blue sky on top, an ocean in the middle, and a sand beach at the bottom. In
other words, beach scene is a complex entity that is composed of three sub-
entities with certain spatial relations. On the other hand, in TV broadcasted
baseball game videos, a typical home run event usually consists of four or
more shots, which starts from a pitcher’s view, followed by a panning outfield
and audience view in which the video camera tracks the flying ball, and ends
with a global or closeup view of the player running to home base. Obviously, a
home run event is a complex data entity that is composed of a unique sequence
of sub-entities.

Popular classifiers for simple data entities include Naive Bayes, Gaussian
Mixture Models (GMM), Neural Networks, Support Vector Machines (SVM),
etc. These classifiers all take the form of k = g(x) to independently classify
the input data x into one of the predefined classes k, without looking at other
spatially, or temporally related data entities.

For modeling complex data entities, popular classifiers include Bayesian
Networks, Hidden Markov Models (HMM), Maximum Entropy Models
(MEM), Conditional Random Fields (CRF), Maximum Margin Markov Net-
works (M3-nets), etc. A common character of these classifiers is that, instead
of determining the class label li of each input data xi independently, a joint
probability function P (. . . , li−1, li, li+1, . . . | . . . ,xi−1,xi,xi+1, . . .) is inferred
so that all spatially, temporally related data . . . ,xi−1,xi,xi+1, . . . are exam-
ined together, and the class labels . . . , li−1, li, li+1, . . . of these related data
are determined jointly. As illustrated in the proceeding paragraph, complex
data entities are usually formed by sub-entities that possess specific spatio-
temporal relationships, modeling complex data entities using the above joint
probability is a very natural yet powerful way of capturing the intrinsic struc-
tures of the given problems.

Among the classifiers for modeling complex data entities, HMM has been
commonly used for speech recognition, and has become a pseudo standard for
modeling sequential data for the last decade. CRF and M3-net are relatively
new methods that are quickly gaining popularity for classifying sequential, or
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interrelated data entities. These classifiers are the ones that are particularly
powerful and effective for modeling multimedia data, and will be the main
focus of this book.

1.2.4 Model Identification vs. Model Prediction

Research on modern statistics has been profoundly influenced by R.A. Fisher’s
pioneer works conducted during the decade 1915–1925 [5]. Since then, and
even now, most researchers have been following his framework for the de-
velopment of statistical learning techniques. Fisher’s framework models any
signal Y as the sum of two components: deterministic and random:

Y = f(X) + ε . (1.2)

The deterministic part f(X) is defined by the values of a known family of
functions determined by a limited number of parameters. The random part
ε corresponds to the noise added to the signal, which is defined by a know
density function. Fisher considered the estimation of the parameters of the
function f(X) as the goal of statistical analysis. To find these parameters, he
introduced the maximum likelihood method.

Since the main goal of Fisher’s statistical framework is to estimate the
model that generates the observed signal, his paradigm in statistics can be
called Model Identification (or inductive inference). The idea of estimating
the model reflects the traditional goal of Science: To discover an existing Law
of Nature. Indeed, Fisher’s philosophy has attracted numerous followers, and
most statistical learning methods, including many methods to be covered in
this book, are formulated based on his model identification paradigm.

Despite Fisher’s monumental works on modern statistics, there have been
bitter controversies over his philosophy which still continue nowadays. It has
been argued that Fisher’s model identification paradigm belongs to the cat-
egory of ill-posed problems, and is not an appropriate tool for solving high
dimensional problems since it suffers from the ”curse of dimensionality”.

From the late 1960s, Vapnik and Chervonenkis started a new paradigm
called Model Prediction (or predictive inference). The goal of model prediction
is to predict events well, but not necessarily through the identification of the
model of events. The rationale behind the model prediction paradigm is that
the problem of estimating a model of events is hard (ill-posed) while the
problem of finding a rule for good prediction is much easier (better-posed).
It could happen that there are many different rules that predict the events
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well, and are very different from the model. nonetheless, these rules can still
be very useful predictive tools.

To go beyond the model prediction paradigm one step further, Vapnik in-
troduced the Transductive Inference paradigm in 1980s [6]. The goal of trans-
ductive inference is to estimate the values of an unknown predictive function
at a given point of interest, but not in the whole domain of its definition.
Again, the rationale here is that, by solving less demanding problems, one
can achieve more accurate solutions. In general, the philosophy behind the
paradigms of model prediction and transductive inference can be summarized
by the following Imperative [7]:

Imperative: While solving a problem of interest, do not solve a more general
problem as an intermediate step. Try to get the answer that you need,
but not a more general one. It is quite possible that you have enough
information to solve a particular problem of interest well, but not enough
information to solve a general problem.

The Imperative constitutes the main methodological differences between
the philosophy of science for simple and complex worlds. The classical phi-
losophy of science has an ambitious goal: discovering the universal laws of
nature. This is feasible in a simple world, such as physics, a world that can be
described with only a few variables, but might not be practical in a complex
world whose description requires many variables, such as the worlds of pattern
recognition and machine intelligence. The essential problem in dealing with
a complex world is to specify less demanding problems whose solutions are
well-posed, and find methods for solving them.

Table 1.1 summarizes discussions on the three types of inferences, and
compares their pros and cons from various view points. The development of
statistical learning techniques based on the paradigms of model prediction and
transductive inference (the complex world philosophy) has a relatively short
history. Representative methods include neural networks, SVMs, M3-nets, etc.
In this book, we will cover SVMs and M3-nets in Chap. 10.

1.3 Multimedia Content Analysis

During 1990s, the field of multimedia content analysis was predominated by
researches on content-based image and video retrieval. The motivation be-
hind such researches is that traditional keyword-based information retrieval
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Table 1.1. Summary of three types of inferences

inductive inference predictive inference transductive inference

goal identify a model discover a rule for estimate values of an

of events good prediction unknown predictive

of events function at some points

complexity most difficult easier easiest

applicability simple world with complex world with complex world with

a few variables numerous variables numerous variables

computation cost low high highest

generalization

power low high highest

techniques are no longer applicable to images and videos due to the following
reasons. First, the prerequisite for applying keyword-based search techniques
is that we have a comprehensive content description for each image/video
stored in the database. Given the state of the art of computer vision and
pattern recognition techniques, by no means such content descriptions can
be generated automatically by computers. Second, manual annotations of im-
age/video contents are extremely time consuming and cost prohibiting; there-
fore, they can be justified only when the searched materials have very high
values. Third but not the last, as there are many different ways of annotating
the same image/video content, manual annotation tends to be very subjective
and diverse, making the keyword-based content search even more difficult.

Given the above problems associated with keyword-based search, content-
based image/video retrieval techniques strive to enable users to retrieve de-
sired images/videos based on similarities among low level features, such as
colors, textures, shapes, motions, etc [8, 9, 10]. The assumption here is that
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visually similar images/videos consist of similar image/motion features, which
can be measured by appropriate metrics. In the past decade, great efforts have
been devoted to many fundamental problems such as features, similarity mea-
sures, indexing schemes, relevance feedbacks, etc. Despite the great amount
of research efforts, the success of content-based image/video retrieval systems
is quite limited, mainly due to the poor performances of these systems. More
than often, the use of a red car image as a query will bring back more images
with irrelevant objects than the images with red cars. A main reason for the
problem of poor performances is that big semantic gaps exist between the
low level features used by the content-based image/video retrieval systems
and the high level semantics expressed by the query images/videos. Users
tend to judge the similarity between two images based more on the semantics
than the appearances of colors and textures of the images. Therefore, a con-
clusion that can be drawn here is that, the key to the success of content-based
image/video retrieval systems lies in the degree to which we can bridge, or
reduce the semantic gaps.

A straightforward yet effective way of bridging the sematic gaps is to
deepen our analysis and understanding of image/video contents. While un-
derstanding the contents of general images/videos is still unachievable now,
recognizing certain classes of objects/events under certain environment set-
tings is already within our reach. From 2003, the TREC Conference spon-
sored by the National Institute of Standards and Technology (NIST) and
other U.S. government agencies, started the video retrieval evaluation track
(TRECVID)1 to promote research on deeper image/video content analysis.
To date, TRECVID has established the following four main tasks that are
open for competitions:

• Shot boundary determination: Identify the shot boundaries by their
locations and types (cut or gradual) in the given video sequences.

• Story segmentation: Identify the boundary of each story by its location
and type (news or miscellaneous) in the given video sequences. A story is
defined as a segment of video with a coherent content focus which can be
composed of multiple shots.

• High-level feature extraction: Detect the shots that contain various
high-level semantic concepts such as “Indoor/Outdoor”, “People”, “Vege-
tation”, etc.

1 The official homepage of TRECVID is located at http://www-nlpir.nist.gov/

projects/trecvid.
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• Search: Given a multimedia statement of the information need (topic),
return all the shots from the collection that best satisfy the information
need.

Comparing the above tasks to the typical machine learning tasks described
in Sect. 1.1, we can find many analogies and equivalences. Indeed, with ever
increasing complexity and variability of multimedia data, machine learning
techniques have become the most powerful modeling tool to analyze the con-
tents, and gain intelligence of this kind of complex data. Traditional rule-
based approaches where humans have to discover the domain knowledge and
encode it into a set of programming rules are too costly and incompetent
for multimedia content analysis because knowledge for recognizing high-level
concepts/events could be very complex, vague, or difficult to define.

In the following chapters of this book, we intend to bring together those
important machine learning techniques that are particularly powerful and ef-
fective for modeling multimedia data. We do not attempt to write a compre-
hensive catalog covering the entire spectrum of machine learning techniques,
but rather to focus on the learning methods effective for multimedia data. To
further increase the usability of this book, we include case studies in many
chapters to demonstrate example applications of respective techniques to real
multimedia problems, and to illustrate factors to be considered in real imple-
mentations.



Part I

Unsupervised Learning



2

Dimension Reduction

Dimension reduction is an important research topic in the area of unsuper-
vised learning. Dimension reduction techniques aim to find a low-dimensional
subspace that best represents a given set of data points. These techniques
have a broad range of applications including data compression, visualization,
exploratory data analysis, pattern recognition, etc.

In this chapter, we present three representative dimension reduction tech-
niques: Singular Value Decomposition (SVD), Independent Component Analy-
sis (ICA), and Local Linear Embedding (LLE). Dimension reduction based on
singular value decomposition is also referred to as principal component analy-
sis (PCA) by many papers in the literature. We start the chapter by discussing
the goals and objectives of dimension reduction techniques, followed by de-
tailed descriptions of SVD, ICA, and LLE. In the last section of the chapter,
we provide a case study where the three techniques are applied to the same
data set and the subspaces generated by these techniques are compared to
reveal their characteristics.

2.1 Objectives

The ultimate goal of statistical machine learning is to create a model that
is able to explain a given phenomenon, or to model the behavior of a given
system. An observation x ∈ R

p obtained from the phenomenon/system can be
considered as a set of indirect measurements of an underlying source s ∈ R

q.
Since we generally have no ideas on what measurements will be useful for
modeling the given phenomemon/system, we usually attempt to measure all
we can get from the target, resulting in a q that is often larger than p.
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Since an observation x is a set of indirect measurements of a latent source
s, its elements may be distorted by noises, and may contain strong correlations
or redundancies. Using x in analysis will not only result in poor performance
accuracies, but also incur excessive modeling costs for estimating an excessive
number of model parameters, some of which are redundant.

The primary goal of dimension reduction is to find a low-dimensional sub-
space R

p′ ∈ R
p that is optimal for representing the given data set with respect

to a certain criterion function. The use of different criterion functions leads
to different types of dimension reduction techniques.

Besides the above primary goal, one is often interested in inferencing the
latent source s itself from the set of observations x1, . . . ,xn ∈ R

p. Consider a
meeting room with two microphones and two simultaneous talking people. The
two microphones pick up two different mixtures x1, x2 of the two independent
sources s1, s2. It will be very useful if we can estimate the two original speech
signals s1 and s2 using the recorded (observed) signals x1 and x2. This is an
example of the classical cocktail party problem, and independent component
analysis is intended to provide solutions to blind source separations.

2.2 Singular Value Decomposition

Assume that x1, . . . ,xn ∈ R
p are a set of centered data points1, and that we

want to find a k-dimensional subspace to represent these data points with the
least loss of information. Standard PCA strives to find a p×k linear projection
matrix Vk so that the sum of squared distances from the data points xi to
their projections is minimized:

L(Vk) =
n∑

i=1

||xi − VkVT
k xi||2 . (2.1)

In (2.1), VT
k xi is the projection of xi onto the k-dimensional subspace spanned

by the column vectors of Vk, and VkVT
k xi is the representation of the pro-

jected vector VT
k xi in the original p-dimensional space. It can be easily verified

that (2.1) can be rewritten as (see Problem 2.2 at the end of the chapter):

n∑

i=1

||xi − VkVT
k xi||2 =

n∑

i=1

||xi||2 −
n∑

i=1

||VkVT
k xi||2 . (2.2)

1 A centered vector xc is generated by subtracting the mean vector m from the

original vector x: xc = x − m, so that xc is a zero-mean vector.
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This means that minimizing L(Vk) is equivalent to maximizing the term∑n
i=1 ||VkVT

k xi||2, which is the empirical variance of these projections. There-
fore, the projection matrix Vk that minimizes L(Vk) is the one that maxi-
mizes the variance in the projected space.

The solution Vk can be computed by Singular Value Decomposition
(SVD). Denote by X the n × p matrix where the i’th row corresponds to the
observation xi. The singular value decomposition of the matrix X is defined
as:

X = UDVT , (2.3)

where U is an n × p orthogonal matrix (UT U = I) whose column vectors ui

are called the left singular vectors, V is a p×p orthogonal matrix (VT V = I)
whose column vectors vj are called the right singular vectors, and D is a p×p

diagonal matrix with the singular values d1 ≥ d2 · · · dp ≥ 0 as its diagonal
elements.

For a given number k, the matrix Vk that is composed of the first k

columns of V constitutes the rank k solution to (2.1). This result stems from
the following famous theorem [11].

Theorem 2.1. Let the SVD of matrix X be given by (2.3), U =
[u1 u2 · · · up], D = diag(d1, d2, . . . , dp), V = [v1 v2 · · · vp ], and rank(X) =
r. Matrix Xτ defined below is the closest rank-τ matrix to X in terms of the
Euclidean and Frobenius norms.

Xτ =
τ∑

i=1

uidivT
i . (2.4)

The use of τ -largest singular values to approximate the original matrix
with (2.4) has more implications than just dimension reduction. Discarding
small singular values is equivalent to discarding linearly semi-dependent or
practically nonessential axes of the original feature space. Axes with small
singular values usually represent either non-essential features or noise within
the data set. The truncated SVD, in one sense, captures the most salient un-
derlying structure, yet at the same time removes the noise or trivial variations
in the data set. Minor differences between data points will be ignored, and
data points with similar features will be mapped near to each other in the τ -
dimensional partial singular vector space. Similarity comparison between data
points in this partial singular vector space will certainly yield better results
than in the raw feature space.

The singular value decomposition in (2.3) has the following interpretations:
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• Column j of the matrix UD (n-dimensional) corresponds to the projected
values of the n data points xi onto the j’th right singular vector vj . This
is because XV = UD, Xvj is the projection of X onto vj , which equals
the j’th column of UD.

• Similarly, row j of the matrix DVT (p-dimensional) corresponds to the
projected values of the p column vectors of X onto the j’th left singular
vector uj . This is because UT X = DVT , uT

j X is the projection of X onto
uj , which equals the j’th row of DVT .

• The left singular vectors uj and the diagonal elements of the matrix D2

are the eigenvectors and eigenvalues of the kernel matrix XXT 2. This is
because

XXT = UDVT VDUT = UD2UT ⇒ XXT U = UD2 .

• Similarly, the right singular vectors vj and the diagonal elements of the
matrix D2 are the eigenvectors and eigenvalues of the covariance matrix
XT X of the n data points. This is because

XT X = VDUT UDVT = VD2VT ⇒ XT XV = VD2 .

It can be verified that for each column vi of V, the following equality holds
(see Problem 2.3 at the end of the chapter):

var(Xvi) = d2
i , (2.5)

where di is the i’th eigenvalue. This means that the columns v1, v2, · · · of
V correspond to the directions with the largest, second largest, · · · sample
variances, which confirms that the matrix Vk that is composed of the first k

columns of V does constitute the rank k solution to (2.1).
We use a synthetic data set to demonstrate the effect of singular value

decomposition. Figure 2.1 shows two parallel Gaussian distributions in a 3-D
space. These two Gaussian distributions have similar shapes, with the mass
stretching mainly along one direction. Figure 2.2 shows the subspace spanned
by the first two principal components found by the singular value decomposi-
tion. The horizontal and the vertical axes correspond to the first and second
principal components, respectively, which are the axes with the largest, and
second largest variances.

2 We call XXT a kernel matrix because its (i, j)’th element is dot product xi · xj

of the data points xi and xj .
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Fig. 2.1. A synthetic data set in a 3-D space
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Fig. 2.2. The subspace spanned by the first two principal components

2.3 Independent Component Analysis

Independent component analysis aims to estimate the latent source from a set
of observations [12]. Assume that we observe n linear mixtures of n indepen-
dent components s1, s2, . . . , sn,

x1 = a11s1 + a12s2 + · · · + a1nsn

x2 = a21s1 + a22s2 + · · · + a2nsn

...
...

xn = an1s1 + an2s2 + · · · + annsn . (2.6)

Without loss of generality, we assume that both the mixture variables and the
independent components have zero mean. If this is not true, we can always
center the mixture variables xi by subtracting the sample means, which makes
the independent components si zero mean as well.

Let x be the vector of the observed (mixture) variables x1, x2, . . . , xn, s
the vector of the latent variables (independent components) s1, s2, . . . , sn, and
A the matrix of the mixture coefficients aij . Using the vector-matrix notation,
(2.6) can be written as

x = As . (2.7)

The ICA model is a generative model because it describes how the observed
data are generated by a process of mixing the latent components si. In (2.7),
both the mixing matrix A and the latent vector s are unknown, and we must
estimate both A and s using the observed vector x.
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It is clear from (2.7) that the ICA model is ambiguous because given any
diagonal n × n matrix R, we have

x = As

= AR−1Rs

= A∗s∗ . (2.8)

To make the solution unique, we add the constraint that requires each latent
variable si to have the unit variance: E[s2

i ] = 1,∀i. Note that this constraint
still leaves the ambiguity of sign: we can multiply the latent variables by
−1 without affecting the model. Fortunately, this ambiguity is not a serious
problem in many applications.

The key assumption for ICA is that the latent variables si are statistically
independent, and must have non-Gaussian distributions (see Sect. 2.3.2 for
explanations). The standard ICA model also assumes that the mixing matrix
A is square, but this assumption can be sometimes relaxed, as explained in
[12]. With these assumptions, the ICA problem can be formulated as: Find a
matrix A such that the latent variables obtained by

s = A−1x (2.9)

are as independent and non-Gaussian as possible.
There are several metrics that can be used to measure the degrees of

independence and non-Gaussianity. Here we provide three metrics that have
been widely utilized in ICA implementations [12].

Kurtosis

Kurtosis is a classical measure of non-Gaussianity. The kurtosis of a random
variable y is defined by

kurt(y) = E[y4] − 3(E[y2])2 . (2.10)

For a variable y with unit variance, kurt(y) = E[y4] − 3, which is simply a
normalized version of the fourth moment E[y4].

Kurtosis is zero for Gaussian variables, and non-zero for most (but not
all) non-Gaussian random variables. Negative kurtosis values typically corre-
spond to spiky probabilistic distributions that have a sharp peak and a long,
low-altitude tail, while positive kurtosis values typically correspond to flat
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probabilistic distributions that have a rather flat peak, and taper off gradu-
ally.

Kurtosis has some drawback in practice. It is very sensitive to outliers,
meaning that a few data points in the tails of a distribution may largely affect
its value. Therefore, kurtosis is not a robust measure of non-Gaussianity.

Negentropy

The differential entropy H(y) of a random vector y is given by

H(y) = −
∫

P (y) log P (y)dy , (2.11)

where P (y) is the probabilistic density distribution of y. Entropy is a mea-
surement of the degree of information on a random variable. The more random
(i.e. unpredictable and unstructured) the variable is, the larger its entropy.
A well-known result in the information theory says that among all random
variables with an equal variance, Gaussian variables have the maximum en-
tropy. This means that entropy can be used as a measure of non-Gaussianity.
Inspired by this observation, Hyvarinen and Oja introduced the negentropy
J(y) defined by [13]

J(y) = H(yg) − H(y) , (2.12)

where yg is a Gaussian random variable with the same covariance matrix as
y. Negentropy is always non-negative, and becomes zero if and only if y is a
Gaussian variable.

Although negentropy is well justified, and has certain preferable statisti-
cal properties, its estimation, however, is problematic because it requires an
estimation of the probabilistic density distribution P (y), which is difficult to
obtain for all but very simple problems.

In [13], Hyvarinen proposed a simple approximation to negentropy that
can be estimated on empirical data. For a random variable y with zero mean
and unit variance, the approximation is given by

J(y) ≈ (E[G(y)] − E[G(yg)])2 , (2.13)

where yg is a Gaussian variable with zero mean and unit variable, and G(y) =
1
a log cosh(ay) for 1 ≤ a ≤ 2.
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Mutual Information

The mutual information I between the components of a random vector y =
[y1, y2, . . . , yn]T is defined as

I(y1, y2, . . . , yn) =
n∑

i=1

H(yi) − H(y) . (2.14)

The quantity I(y1, y2, . . . , yn) is equivalent to the famous Kullback-Leibler
divergence between the joint density p(y) and the product of its marginal
densities

∏n
i=1 p(yi), which is an independent version of p(y). It is always

non-negative, and becomes zero if and only if the variables are statistically
independent.

Mutual information can be interpreted as a metric of the code length
reduction from the information theory’s point of view. The terms H(yi) give
the code lengths for the components yi when they are coded separately, and
H(y) gives the code length when all the components are coded together.
Mutual information shows what code length reduction is obtained by coding
the whole vector instead of the separate components. If the components yi

are mutually independent, meaning that they give no information on each
other, then

∑n
i=1 H(yi) = H(y), and there will be no code length reduction

no matter whether the components yi are coded separately or jointly.
An important property of mutual information is that, for an invertible

linear transformation y = Wx we have

I(y1, y2, . . . , yn) =
n∑

i=1

H(yi) − H(x) − log |detW| . (2.15)

If both x and y have the identity covariance matrix I, then W is a orthogonal
matrix (see the derivation of (2.17)), and I(y1, y2, . . . , yn) becomes

I(y1, y2, . . . , yn) =
n∑

i=1

H(yi) − H(x) . (2.16)

This property implies that computation cost can be reduced if we conduct the
whitening pre-processing before estimating the latent variables using (2.9) (see
Sect. 2.3.1 for more descriptions).

2.3.1 Preprocessing

The most basic and necessary preprocessing is to center the observed variables
x, which means that we subtract x with its mean vector m = E[x] to make
x a zero-mean vector.
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Another useful preprocessing is to first whiten the observed variables x
before estimating A in (2.9). This means that we transform the observed
variables x linearly into new variables x̃ = Bx such that E[x̃x̃T ] = I. The
whitening preprocessing transforms the mixing matrix A in (2.9) into an
orthogonal matrix. This can be seen from

I = E[x̃x̃T ] = E[Bx(Bx)T ]

= E[BAs(BAs)T ]

= E[Ãs(Ãs)T ]

= ÃE[ssT ]Ã
T

= ÃÃ
T

, (2.17)

where Ã = BA, and the last equality is derived from the assumption that the
latent variables s are independent, have zero mean and unit variance.

Transforming the mixing matrix A into an orthogonal one reduces the
number of parameters to be estimated. An n × n orthogonal matrix contains
n(n − 1)/2 degrees of freedom, while an arbitrary matrix of the same size
contains n2 elements (parameters). For matrixes with large dimensions, the
whitening preprocessing roughly reduces the number of parameters to be es-
timated to half, which dramatically decreases the complexity of the problem.

The whitening preprocessing can be always accomplished using the eigen-
value decomposition of the covariance matrix E[xxT ] = EDET , where E is the
orthogonal matrix of the eigenvectors of E[xxT ], and D = diag(d1, d2, . . . , dn)
is the diagonal matrix of its eigenvalues. It is easy to verify that the vector x̃
given by

x̃ = ED−1/2ET x (2.18)

satisfies E[x̃x̃T ] = I, and therefore, it is the whitened version of x.

2.3.2 Why Gaussian is Forbidden

As demonstrated by (2.8), there exist certain ambiguities with the ICA for-
mulation. The assumption of statistical independence of the latent variables
s serves to remove these ambiguities. Intuitively, the assumption of non-
correlation determines the covariances (the second-degree cross-moments) of a
multivariate distribution, while the assumption of statistical independence de-
termines all of the cross-moments. These extra moment conditions allow us to
remove the ambiguities, and to uniquely identify elements of the mixing matrix
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Fig. 2.3. The subspace spanned by the two independent components

A. The additional moment conditions, however, do not help Gaussian distri-
butions because they are determined by the second-degree moments alone,
and do not involve higher degree cross-moments. As a result, any Gaussian
independent components can be only determined up to a rotation.

In summary, ICA aims to find a linear projection A of the observed data x
such that the projected data s = A−1x look as far from Gaussian, and as in-
dependent as possible. This amounts to maximizing one of the non-Gaussian,
independence metrics introduced in this section. Maximizing these metrics can
be achieved using the standard gradient decent algorithm and its variations.
An algorithm that efficiently computes the latent variables s by maximizing
the approximation of negentropy given by (2.13) can be found in [12].

Figure 2.3 shows the subspace obtained by applying the ICA algorithm to
the synthetic data set shown in Fig. 2.1. The data distribution in the figure
confirms that the two axes of this subspace correspond to the two directions
that provide the maximum statistical independence.
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2.4 Dimension Reduction by Locally Linear Embedding

Many complex data represented by high-dimensional spaces typically have
a much more compact description. Coherent structures in the world lead to
strong correlations between components of objects (such as neighboring pixels
in images), generating observations that lie on or close to a smooth low-
dimensional manifold. Finding such a low-dimensional manifold for the given
data set can not only provide a better insight into the internal structure of
the data set, but also dramatically reduce the number of parameters to be
estimated for constructing reasoning models.

In this section, we present one of the latest techniques for manifold com-
putations: dimension reduction by locally linear embedding (LLE) [14]. The
LLE method strives to compute a low-dimensional embedding of the high-
dimensional inputs which preserves the neighborhood structure of the origi-
nal space. The method also does not have the local minimum problem, and
guarantees to generate the globally optimal solution.

The LLE algorithm is based on simple geometric intuitions. Consider a
manifold in a high dimensional feature space, such as the one shown in Fig.
2.4. Such a manifold can be decomposed into many small patches. If each
patch is small enough, it can be approximated as a linear patch. Assume that
a data set sampled from the manifold consists of N real-valued, D-dimensional
vectors xi. If we have sufficient data points such that the manifold is well-
sampled, we expect each data point and its neighbors to lie on or close to
a locally linear patch of the manifold. Therefore, each data point xi can be
reconstructed as a linear combination of its neighbors xj

xi ≈
∑

j

wijxj , (2.19)

and the local geometry of each patch can be characterized by the linear co-
efficients wij . The LLE algorithm strives to find the matrix W of the linear
coefficients wij for all the data points xi by minimizing the following recon-
struction error

E(W) =
∑

i

||xi −
∑

j

wijxj ||2 . (2.20)

The minimization of the reconstruction error E(W) is conducted subject
two the following two constraints:

1. Each data point xi is reconstructed only from its neighbors, enforcing
wij = 0 if xj does not belong to the set of neighbors of xi.
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Fig. 2.4. An example of manifold. (a) shows a manifold in a 3-D space. (b) shows

the projected manifold in the 2-D subspace generated by the LLE algorithm
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2. The rows of the weight matrix W sum to one:
∑

j wij = 1.

The set of neighbors for each data point can be obtained either by choosing
the K nearest neighbors in Euclidean distance, or by selecting data points
within a fixed radius, or by using certain prior knowledge. The LLE algorithm
described in [14] reconstructs each data point using its K nearest neighbors.

The optimal weights wij subject to the above two constraints can be ob-
tained by solving a least-squares problem, and the result is given by

wij =
∑

k

C−1
jk (xi · xk + λ) , (2.21)

where C−1 is the inverse of the neighborhood correlation matrix C = {cjk},
cjk = xj · xk, C−1

jk is the (j, k)’th element of the inverse matrix C−1, and

λ =
1−

∑
jk C−1

jk (xi·xk)
∑

jk C−1
jk

.

The constrained weights that minimize the reconstruction error E(W)
have the important property that for any data points, they are invariant to
rotations, rescalings, and translations of the data points and their neighbors.
Note that the invariance to translations is specifically enforced by the sum-
to-one constraint on the rows of the weight matrix W.

After obtaining the weight matrix W, the next step is to find a linear
mapping that maps the high-dimensional coordinates of each neighborhood
to global internal coordinates on the manifold of lower dimensionality d << D.
The linear mapping may consist of a translation, rotation, rescaling, etc. By
design, the reconstruction weights wij reflect intrinsic geometric properties of
the data that are invariant to exactly these transformations. Therefore, we
expect their characterization of local geometry in the original data space to
be equally valid for local patches on the manifold. In particular, the same
weights wij that reconstruct the data point xi in the original D-dimensional
space should also reconstruct its embedded manifold coordinates in the lower
d-dimensional space.

Based on the above idea, LLE constructs a neighborhood-preserving map-
ping matrix Y = [y1,y2, . . . ,yN ] that minimizes the following embedded cost
function

Θ(Y) =
∑

i

||yi −
∑

j

wijyj ||2 , (2.22)

where yi is the global internal coordinates of the data point xi on the manifold.
This cost function, like (2.20), is based on locally linear reconstruction errors,
but here we fix the weights wij while optimizing the mapping matrix Y. To
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Fig. 2.5. The 2-D manifold obtained by the LLE algorithm

make the problem well-posed, the optimization is performed subject to the
following two constraints:

1. The coordinates yi are centered to the origin:
∑

i yi = 0. This is to remove
the freedom that yi can be translated by a constant displacement without
affecting the cost Θ(Y).

2. The mapping matrix Y has an unit covariance matrix: YYT = I.

With the above two constraints, the optimal embedding, up to a global
rotation of the embedding space, is obtained by computing the bottom d + 1
eigenvectors of the matrix M = [mij ], where

mij = δij − wij − wji +
∑

k

wkiwkj , (2.23)

and δij is 1 if i = j and 0 otherwise. The detailed mathematical derivations
can be found in [14].
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In summary, given the user’s input on the number of dimensions d of
the manifold and the number of neighbors K for each data point, the LLE
algorithm consists of the following three major steps:

1. For each data point xi, choose the K nearest neighbors as its neighborhood
set.

2. Use (2.21) to compute the optimal weights wij .
3. Use (2.23) to compute the matrix M, and the embedding vectors yi.
4. Repeat Step 1 ∼ 3 until all the data points are processed.

Figure 2.5 shows the 2-D manifold obtained by applying the LLE algorithm
to the synthetic data set shown in Fig. 2.1. The data distribution in the figure
is almost identical to the one shown in Fig. 2.2 if we flip the space vertically.
This indicates that the 2-D manifold is formed by preserving the first two
principal components, and discarding the least important one of the original
space.

2.5 Case Study

In this section, we provide a case study where the three dimension reduction
techniques described in this chapter, namely SVD, ICA, and LLE, are applied
to a subset of handwritten digits from the MNIST database [15]. The MNIST
database has a total of 60,000 handwritten digits, each of which is normalized
to a 28 × 28 gray-scale image with each pixel ranging in intensity from 0 to
255. Preprocessing is conducted to center each handwritten digit within the
28 × 28 image. Among the 60,000 handwritten digits, there are 5421 fives in
the MNIST database, from which we have randomly selected 539 images to
form our experimental test set.

Figure 2.6 shows the subspace generated by the singular value decomposi-
tion. In this figure, (a) shows the subspace spanned by the first two principal
components, where the circled points are the projected images closest to the
vertices of a square grid, and (b) displays the images corresponding to the
circled points in (a). Plot (b) allows us to visualize the natures of the first
two principal components. We see that the horizontal axis mainly accounts
for the length of the upper and lower tails of digit five, while the vertical axis
accounts for character thickness. Although there are a total of 784 possible
principal components, the first 50 components account for approximately 90%
of the variation in handwritten fives.
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Fig. 2.6. The subspace generated by the singular value decomposition. (a) shows

the subspace spanned by the first two principal components. The circled points are

the projected images closest to the vertices of a square grid. (b) displays the images

corresponding to the circled points in (a)
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Fig. 2.7. The subspace generated by the independent component analysis. (a) shows

the subspace spanned by the two independent components. The circled points are

the projected images closest to the vertices of a square grid. (b) displays the images

corresponding to the circled points in (a)
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Fig. 2.8. The subspace generated by the locally linear embedding method. (a) shows
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images closest to the vertices of a square grid. (b) displays the images corresponding

to the circled points in (a)
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Figure 2.7 shows the subspace spanned by the two independent compo-
nents. Same as Fig. 2.6, we superimpose a square grid on the space, and
display the projected images that are closest to the vertices of the grid. It is
not surprising that the subspace shown in (a) has a long-tailed distribution,
because ICA specifically looks for non-Gaussian distributions. The sample im-
ages displayed in (b) do not show salient trends along the horizontal and the
vertical axes, and we are unable to tell the physical implications of the two
axes.

Figure 2.8 shows the two-dimensional subspace generated by the locally
linear embedding method. From (b) we see that the horizontal axis mainly
accounts for the lengths of the upper and lower tails, and the vertical axis
accounts for the width of the handwritten fives.

Problems

2.1. Let X ∈ R2 follows uniform distribution in region |X1 + 2X2| ≤ 1.
a) What is the principle components of X?
b) What is the independent components of X?

2.2. For an orthogonal linear projection matrix VT V = I, prove

‖x − VVT x‖2 = ‖x‖2 − ‖VVT x‖2 .

2.3. The singular value decomposition of a matrix X is defined as

X = UDVT .

Prove that for each column vi of V, the following equality holds:

var(Xvi) = d2
i ,

where di is the i’th eigenvalue.

2.4. Let X and Y be two Gaussian random variable. Show that the mutual
information between X and Y is:

I(X,Y ) =
1
2

log
1

1 − ρ2

where ρ = Cov(X,Y )√
V ar(X)V ar(Y )

is the correlation coefficient between X and Y .
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2.5. Let A be an M × N matrix, w = [w1, w2, . . . , wN ]T an N dimensional
vector, b an M dimensional vector. Find the solution for the following con-
strained optimization problem

min
w

‖Aw − b‖2 ,

subject to constraint
∑

i wi = 1.

2.6. Let P (X,Y ) be the joint distribution function of random variables X

and Y . f(X,Y ) = log P (X,Y ). Assume f is twice differentiable. Prove that
∂2f

∂x∂y = 0 if and only if X and Y are independent.

2.7. Let X1 and X2 be two independent random variables with the distri-
bution functions P (X) and Q(X). Assume f(X) = log P (X) and g(X) =
log Q(X) are twice differentiable. Prove that (a) and (b) are equivalent

(a) X1 and X2 are two Gaussian random variables with the same variance.
(b) For any A ∈ R2×2 such that AAT = I, [Y1Y2]T = A[X1X2]T transforms

X1 and X2 into two independent random variables Y1 and Y2. (Hint: Use
Problem 2.6).

2.8. Show that the LLE algorithm is rotational and translational invariant,
i.e., LLE will find the same result if the original data is subject to some
rotation and/or translation.

2.9. Show that kernel trick can be applied to principle component analysis,
i.e., the principle components can be obtained from inner products between
the data vectors without the need of referring to the original vectors.
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Data Clustering Techniques

3.1 Introduction

Data clustering, also called data segmentation, aims to partition a collection
of data into a predefined number of subsets (or clusters) that are optimal in
terms of some predefined criterion function. Data clustering is a fundamen-
tal and enabling tool that has a broad range of applications in many areas.
Because of this, research on data clustering techniques has been the focus
of considerable attention from multidisciplinary research communities such
as pattern recognition, machine learning, data mining, information retrieval,
bio-informatics, etc.

Generally speaking, to develop a data clustering method one needs to
address the following three basic problems:

1. What is the model for modeling (or what is the assumption for the dis-
tribution of ) the given data set?

2. What is the criterion function to be optimized by the clustering process?
3. What is the computation algorithm for carrying out the optimization?

The data model together with the criterion function determine the data clus-
tering capability, while the computation algorithm determines how effectively
the designated clustering result can be obtained. Good clustering results are
those that correspond well to human perceptions, and such results should
be obtained by using computationally effective algorithms. Therefore, a good
data clustering method can be defined as the one that constantly produces
clustering results that correspond well to human perceptions, using a compu-
tationally effective algorithm.
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A great variety of clustering methods have been developed using various
data models and criterion functions. Among them, K-means and hierarchi-
cal clustering are the two most famous and long-standing data clustering
methods. K-means produces a cluster set that minimizes the sum of squared
distances between the data points and the cluster centers through an itera-
tive assignment-reassignment process [16]. Hierarchical clustering groups the
data points into a hierarchical tree structure, or a dendrogram, using either
the bottom-up or the top-down approach [17, 18]. The bottom-up approach
starts by placing each data point into a distinct cluster and then iteratively
merges the two most similar clusters into one parent cluster, while the top-
down approach starts by forming the root cluster with the entire data set and
then iteratively splits the cluster with the largest variation into child clusters.

Early generation data clustering methods, represented by K-means and
hierarchical clustering, suffer from various drawbacks due to the following
reasons. First, many methods either do not have an explicit data model, or
are based on a model that makes harsh simplifying assumptions on data dis-
tributions. Second, the criterion functions adopted by some methods are too
simple to handle complicated data distributions. Third, many clustering meth-
ods do not have efficient algorithms to compute the optimal solutions for the
employed criterion functions. For example, the criterion function used by K-
means favors the creation of compact, spherical clusters, and its iterative
assignment-reassignment process is very prone to a local minimum solution.
For data sets with elongated or spiral distributions, K-means often generates
very poor clustering results. On the other hand, the hierarchical clustering
has a computation complexity of O(n2 log n), where n is the number of data
points in the data set. Because of the quadratic order of complexity, it could
become computationally prohibitive for handling a data set with millions of
data points.

In recent years, two classes of new data clustering techniques: spectral
clustering based on graph partitioning theories and data clustering based on
Non-Negative Matrix Factorization (NMF), have emerged as the most pow-
erful and promising alternative approaches. Spectral clustering methods are
known for their powerful optimization algorithms that are guaranteed to com-
pute globally optimal data clustering results, while NMF-based methods are
characterized by the adoption of a more general model that makes an unique
assumption (non-negative) on data distributions. Despite their superiorities,
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there is yet a text book that provides a systematic coverage on these state-of-
the-art techniques.

In this chapter, instead of providing a comprehensive coverage on all kinds
of data clustering methods, we focus our descriptions on the spectral cluster-
ing and NMF-based clustering techniques mentioned above. In the first half of
this chapter, we provide a systematic coverage on four representative spectral
clustering techniques from the aspects of problem formulation, objective func-
tions, and solution computations. We also reveal the characteristics of these
spectral clustering techniques through analytical examinations of their objec-
tive functions. In the second half of the chapter, we describe two NMF-based
data clustering techniques, which stem from our original works in recent years.
At the end of this chapter, we provide a case study where the spectral and
NMF clustering techniques are applied to the text clustering task, and their
performance comparisons are conducted through experimental evaluations.

3.2 Spectral Clustering

Spectral clustering techniques model a given data set using an undirected
graph, and the data clustering task is accomplished by finding the best cuts
of the graph that optimize certain predefined criterion functions. The opti-
mization of the criterion functions usually leads to the computation of the top
eigenvectors of certain graph affinity matrices, and the clustering result can
be derived from the obtained eigenvector space.

3.2.1 Problem Formulation and Criterion Functions

Given an input data set D with a total of N data points, spectral clustering
techniques represent the data set D using an undirected graph G(V,E,A),
where V, E, A denote the vertex set, the edge set, and the graph affinity
matrix, respectively. In graph G, each vertex Vi ∈ V represents a data point
i ∈ D, each edge (i, j) ∈ E is assigned an affinity score aij to reflect the
similarity between data points i and j, and each affinity score aij is used
to form the (i, j)’th element of the graph affinity matrix A = [aij ], i, j =
1, . . . , N .

Once the data set D is represented by the undirected graph G(V,E,A),
the data clustering task can then be transformed into the problem of finding
the best cuts of the graph that optimize a predefined criterion function. Many
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criterion functions can be considered here, but not all of them, however, can
lead to an efficient algorithm for computing the optimal clustering solution.
In the following, we introduce four representative criterion functions for which
there exit efficient optimization algorithms.

Let K denote the number of clusters to be generated, Si, Sj denote two
vertex subsets (clusters) of V, and W (Si,Sj) denote the sum of similarities
between Si and Sj :

W (Si,Sj) =
∑

u∈Si,v∈Sj

auv , (3.1)

where auv is the (u, v)’th element of the graph affinity matrix A. The four
popular criterion functions employed by spectral clustering techniques are:

Average Weight (AW)

FAW =
K∑

c=1

W (Sc,Sc)
|Sc|

, (3.2)

where |Sc| is the size of cluster Sc. Spectral clustering technique using this cri-
terion function is commonly called Average Weight (or Average Association).
This naming convention also applies to other spectral clustering techniques
in this book. Average Weight strives to generate a cluster set that maximizes
the within-cluster similarities normalized by the cluster sizes.

Ratio Cut (RC)

FRC =
K∑

c=1

W (Sc,Sc)
|Sc|

, (3.3)

where Sc denotes the vertex subset V − Sc. Ratio Cut [19], which is also
referred to as Average Cut, aims to generate a cluster set that minimizes the
between-cluster similarities normalized by the cluster sizes.

Normalized Cut (NC)

FNC =
K∑

c=1

W (Sc,Sc)
W (Sc,V)

. (3.4)
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Normalized Cut [20] adopts a criterion function that replaces the denominator
in (3.3) with W (Sc,V). This denominator can be considered as a measure for
compactness of the entire data set. Therefore, Normalized Cut attempts to
create a cluster set that minimizes the between-cluster similarities normalized
by the compactness of the data set.

Minimum Maximum Cut (MMC)

FMMC =
K∑

c=1

W (Sc,Sc)
W (Sc,Sc)

. (3.5)

Using this criterion function, Minimum Maximum Cut [21] tries to minimize
the between-cluster similarities and to maximize the within-cluster similarities
simultaneously.

It is noteworthy that the widely used K-means algorithm can be proven to
be equivalent to the Average Weight spectral clustering method. The criterion
function used by K-means is:

FKM =
K∑

c=1

∑

x∈Sc

‖x − µc‖2 (3.6)

where µc is the center of cluster Sc. If the similarity measure used by FKM

is the dot product of feature vectors of two data points, then we have:

FKM =
K∑

c=1

1
2|Sc|

∑

x1,x2∈Sc

‖x1 − x2‖2

=
K∑

c=1

1
2|Sc|

∑

x1,x2∈Sc

(‖x1‖2 + ‖x2‖2 − 2x1 · x2)

=
∑

x

‖x‖2 −
K∑

c=1

1
|Sc|

∑

x1,x2∈Sc

x1 · x2

=
∑

x

‖x‖2 −FAW (3.7)

Therefore, minimizing the K-means criterion function FKM is equivalent to
maximizing that of Average Weight FAW .

In the next subsection, we will show algorithms to compute the cluster set
that optimizes these criterion functions.



42 3 Data Clustering Techniques

3.2.2 Solution Computation

After defining the criterion functions in Sect. 3.2.1, the next problem is how to
efficiently find the cluster set that optimizes these criterion functions. Gener-
ally, finding the exact optimal solutions (cluster sets) to these criterion func-
tions has been proven to be an NP-hard problem [20]. The strategy taken by
spectral clustering techniques is to relax some of the restrictions so that we
can compute the approximate solutions using linear algebra algorithms.

Let x = [x1, x2, . . . , xN ]T be the indication vector of a cluster S where
each element xi takes a binary value to indicate if the i’th data point belongs
to S or not. Using the indication vector x, we can easily derive the following
identities:

|S| = xT x (3.8)

W (S1,S2) = xT
1 Ax2 (3.9)

W (S,V) = xT Dx (3.10)

W (S,S) = xT (D − A)x (3.11)

where A is the graph affinity matrix, D is the diagonal matrix such that
D1 = A1, and 1 = [1, 1, . . . , 1]T . In other words, each diagonal element dii

of the matrix D is the sum of all the elements in row i of the matrix A:
dii =

∑N
j=1 aij .

Using the above identities, the four criterion functions can be rewritten
as:

FAW =
K∑

c=1

W (Sc,Sc)
|Sc|

=
K∑

c=1

xT
c Axc

xT
c xc

=
K∑

c=1

yT
c Ayc (3.12)

where yc = xc/‖xc‖.

FRC =
K∑

c=1

W (Sc,Sc)
|Sc|

=
K∑

c=1

xT
c (D − A)xc

xT
c xc
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=
K∑

c=1

yT
c (D − A)yc (3.13)

where yc is the same as above.

FNC =
K∑

c=1

W (Sc,Sc)
W (Sc,V)

=
K∑

c=1

xT
c (D − A)xc

xT
c Dxc

= K −
K∑

c=1

xT
c Axc

xT
c Dxc

= K −
K∑

c=1

xT
c D

1
2 D− 1

2 AD− 1
2 D

1
2 xc

xT
c D

1
2 D

1
2 xc

= K −
K∑

c=1

yT
c D− 1

2 AD− 1
2 yc (3.14)

where yc = D
1
2 xc/‖D

1
2 xc‖.

FMMC =
K∑

c=1

W (Sc,Sc)
W (Sc,Sc)

=
K∑

c=1

xT
c (D − A)xc

xT
c Axc

= −K +
K∑

c=1

xT
c Dxc

xT
c Axc

= −K +
K∑

c=1

1
yT

c D− 1
2 AD− 1

2 yc

(3.15)

where yc is the same as in (3.14).
The vectors yc in the above equations all satisfy: yc · yc′ = 0, yc · yc = 1.

In other words, they are orthonormal vectors (see Problem 3.1 at the end of
this chapter). This orthonormal property is important because it enables us to
apply the Rayleigh Quotient Theorem to deriving the optimization algorithm.

With the above derivations, our task of finding the cluster set that opti-
mizes one of the above criterion functions can be turned into the following
optimization problem:
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Find the set of K indicator vectors [x1,x2, . . . ,xK ] with binary-valued
elements that minimizes (or maximizes) the predefined criterion function.

Generally, solving this optimization problem in its original form has been
proven to be NP-hard. However, if we relax all the elements of each indicator
vector xi from binary values to real values, the above optimization problem
can be easily solved by applying the following Rayleigh Quotient Theorem
[20].

Theorem 3.1. Let A be a real symmetric matrix. Under the constraint that
x is orthogonal to the j − 1 smallest eigenvectors x1, . . . ,xj−1, the quotient
xT Ax
xT x

is minimized by the next smallest eigenvector xj, and its minimum value
is the corresponding eigenvalue λj.

Applying this theorem to the above four criterion functions, we obtain the
following solutions.

Average Weight

FAW ≤ λ1 + . . . + λK (3.16)

where λ1, . . . , λK are the K largest eigenvalues of A, and the maximum is
achieved when yc’s in (3.12) are the eigenvectors of the largest eigenvalues.

Ratio Cut

FRC ≥ λN + . . . + λN−K+1 (3.17)

where λN , . . . , λN−K+1 are the K smallest eigenvalues of D − A, and the
minimum is achieved when yc’s in (3.13) are the eigenvectors of the smallest
eigenvalues.

Normalized Cut

FNC ≥ K − (λ1 + . . . + λK) (3.18)

where λ1, . . . , λK are the K largest eigenvalues of D− 1
2 AD− 1

2 , and the mini-
mum is achieved when yc’s in (3.14) are the eigenvectors of the largest eigen-
values.



3.2 Spectral Clustering 45

Minimum Maximum Cut

Zha, et al. [22] proved that

FMMC ≥ −K +
K2

λ1 + . . . + λK
(3.19)

The minimum is achieved when y1, . . . ,yK in (3.15) are the orthonormal basis
of the subspace spanned by the eigenvectors of the K largest eigenvalues of
D− 1

2 AD− 1
2 and further satisfy

yT
c D− 1

2 AD− 1
2 yc =

λ1 + . . . + λK

K
. (3.20)

In other words, the vector set that minimizes FMMC can be obtained by
rotating the K largest eigenvectors of D− 1

2 AD− 1
2 within the derived eigen-

space. Therefore, the solution to FMMC is equivalent to the one for FNC ,
with the only difference lying in a rotation between the two vector sets.

The four criterion functions and the corresponding eigen-problems are
summarized in Table 3.1.

Table 3.1. Summary of representative spectral clustering techniques

Method Average Weight Ratio Cut Normalized Cut Min-Max Cut

Criterion
∑

c
W (Sc,Sc)

|Sc|
∑

c
W (Sc,Sc)

|Sc|
∑

c
W (Sc,Sc)
W (Sc,V)

∑
c

W (Sc,Sc)
W (Sc,Sc)

Matrix Form
∑

c

xT
c Axc

xT
c xc

∑
c

xT
c (D−A)xc

xT
c xc

∑
c

xT
c (D−A)xc

xT
c Dxc

∑
c

xT
c (D−A)xc

xT
c Axc

Eigen Prob. Ay = λy (D − A)y = λy Ay = λDy Ay = λDy

yc = xc
‖xc‖ yc = xc

‖xc‖ yc = D
1
2 xc∥∥∥D
1
2 xc

∥∥∥
yc = D

1
2 xc∥∥∥D
1
2 xc

∥∥∥

Bound ≤
∑K

i=1 λi ≥
∑K

i=1 λN−i+1 ≥
∑K

i=1(1 − λi) ≥ −K + K2
∑K

i=1 λi

Note: λ1, λ2, . . . represent the eigen vectors of the largest, second largest, . . . eigen

values.
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The K eigenvectors y1, · · · ,yK obtained above encode the cluster member-
ship information for the given data set V. However, since these eigenvectors
take real values for their elements, they do not directly indicate the cluster
membership for each data point i. A common approach for deriving the final
cluster set is to project each data point into the eigen-space spanned by the
K eigenvectors, and apply the K-means algorithm within this eigen-space.

Let Y be the N ×K matrix comprising the K eigenvectors, and ui be the
K × 1 vector comprising elements i of all the K eigenvectors:

Y = [y1,y2, . . . ,yK ] =

⎡

⎢⎢⎣

uT
1

...
uT

N

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

a1ũT
1

...
anũT

N

⎤

⎥⎥⎦ , (3.21)

where ai = ‖ui‖ and ũi = ui/‖ui‖. In the eigen-space spanned by the K

eigenvectors, each data point i is represented by the vector ui (or the nor-
malized vector ũi). It has been proven by Ng and Zha [23, 22] that if the
given data set has exactly K separable clusters, then these K clusters can be
well separated in the space of ũi’s. Thus a further step of applying a simple
data clustering algorithm such as K-means will be sufficient to obtain the final
cluster set.

In summary, the general procedure for spectral clustering techniques can
be described as follows:

1. Represent the given data set using the undirected graph G(V,E,A).
2. Solve the eigen problem to find the K largest/smallest eigenvectors Y =

[y1,y2, . . . ,yk] according to Table 3.1.
3. Compute ũi’s according to (3.21).
4. Recover the cluster membership from the eigen-space by performing K-

means algorithm on ũi’s.

3.2.3 Example

We use a simple, small data set to illustrate data distributions in the eigen-
spaces derived by the respective spectral clustering methods. The data set was
composed by mixing three document classes from the TDT2 document cor-
pus, which consist of 12, 37, and 54 documents, respectively. Each document
was represented by a 996-dimensional feature vector, with each dimension in-
dicating the occurrence frequency of a specific keyword in the document (see
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Fig. 3.1. Data distribution in the original feature subspace. The figure is created by

finding the three most important axes of the original feature space using principal

component analysis, and then plotting the data set into the subspace spanned by

these three axes

Sect. 3.5 for detailed descriptions on TDT2, and feature vectors for document
representation).

Figure 3.1 shows the distribution of the given data set in the original fea-
ture subspace. Because the original feature space consists of 996 dimensions,
it can not be directly shown using a 2-D or 3-D graph. Figure 3.1 was created
by finding the three most important axes of the original feature space using
principal component analysis, and then plotting the data set into the subspace
spanned by these three axes. Data points belonging to the same cluster are
depicted using the same symbol.

Applying the spectral clustering techniques to the given data set, we obtain
the eigen-spaces spanned by three eigenvectors. Fig. 3.2(a), (b), (c) depict the



48 3 Data Clustering Techniques

0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

0 0.1 0.2
−0.1

0

0.1

0.2

0.3

0.4

−0.2 0 0.2
−0.1

0

0.1

0.2

0.3

0.4

(a) Average Weight
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(b) Ratio Cut
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(c) Normalized Cut

Fig. 3.2. Data distributions in the subspaces of u1-u2, u1-u3, and u2-u3, respec-

tively. (a), (b), (c) depict the subspaces derived by the Average Weight, Ratio Cut,

and Normalized Cut, respectively. Documents belonging to the same cluster are

depicted by the same symbol

eigen-spaces derived by the Average Weight, Ratio Cut, and Normalized Cut,
respectively. Each group of three graphs depict the data distributions in the
subspaces of u1–u2, u1–u3, and u2–u3, respectively. In these figures, data
points belonging to the same cluster are depicted using the same symbol.
Since the Minimum Maximum Cut is essentially the same as the Normalized
Cut except for the rotations of eigenvectors, we omit its graphs here, and will
not conduct further evaluations on it in subsequent sections.

For comparisons, We also show the data distributions in the subspaces
of ũ1–ũ2, ũ1–ũ3, and ũ2–ũ3 derived by the three spectral clustering tech-
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niques (Fig. 3.3). From these two figures, we can clearly make the following
observations:

• Spectral clustering techniques essentially project the given data set of a
high dimension into an eigen-space of a much lower dimension where the
data set can be easily separated.

• The eigen-space derived by the Normalized Cut has the data distribution
that is the easiest to separate.

• The axes spanning each eigen-space do not directly indicate the cluster
membership for each data point, and an additional step of applying a
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Fig. 3.3. Data distributions in the subspaces of ũ1-ũ2, ũ1-ũ3, and ũ2-ũ3, respec-

tively. (a), (b), (c) depict the subspaces derived by the Average Weight, Ratio Cut,

and Normalized Cut, respectively. Documents belonging to the same cluster are

depicted by the same symbol
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simple data clustering algorithm such as K-means is necessary to obtain
the final cluster set.

• Data distributions in the normalized eigen-spaces ũ1-ũ2-ũ3 are more com-
pact than those in the corresponding eigen-spaces u1-u2-u3, so that apply-
ing K-means in the normalized eigen-spaces is expected to generate better
final clustering results.

In fact, the above observations are true for most data sets. Indeed, Fig.
3.2 and 3.3 provide us with the insight on why spectral clustering techniques
are generally better than traditional data clustering methods which mostly
conduct data clustering operations in the original data space. Moreover, as
witnessed here and will be further proven in Sect. 3.5, Normalized Cut al-
ways generates the best performances compared to other spectral clustering
techniques.

Another advantage of spectral clustering techniques, which can not be ob-
served directly from the above figures, is that because data clustering results
are derived by solving certain eigen-problems, they guarantee globally opti-
mal solutions, and are immune to the local optimum problem. In contrast,
traditional clustering methods such as K-means are prone to local optimums,
even if they use a criterion function that is similar to those of spectral clus-
tering techniques. This is mainly because of the ad hoc algorithms used for
computing the optimal solutions.

3.2.4 Discussions

We study the reason why Normalized Cut always performs better than other
spectral clustering methods. Consider a data set with a total of N data points,
where each data point i is represented by a feature vector xi. If we define the
affinity score between data points i and j as aij = (xi·xj), then the graph affin-
ity matrix for the data set becomes A = XT X, where X = [x1,x2, . . . ,xN ]
is the feature–data matrix in which column i is the feature vector xi of data
point i.

Normalized Cut attempts to compute the eigenvectors of D− 1
2 AD− 1

2 =
D− 1

2 XT XD− 1
2 , where D is the diagonal matrix with the diagonal element

dii =
∑N

j=1 aij =
∑N

j=1(xi · xj). This is equivalent to finding the singular
vectors for XD− 1

2 . In contrast, Average Weight attempts to find the singu-
lar vectors for X. Therefore, what distinguishes Normalized Cut from other
spectral clustering methods is that Normalized Cut applies weight 1/dii to
the feature vector xi of data point i while others do not!
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What does the weighting scheme employed by Normalized Cut mean? A
closer examination on this weighting scheme reveals the following:

• If a data point i belongs to a large cluster, which means the feature vector
xi is similar to many other feature vectors xj , j �= i, then the weight
1/dii becomes very small. Therefore, the weight to xi serves to reduce the
importance of data point i.

• On the other hand, if the data point i belongs to a small cluster, which
means xi is similar to only few feature vectors xj , then the weight 1/dii

becomes very large, and therefore, serves to increase the important of data
point i.

This kind of weighting scheme is particularly useful for data sets with unbal-
anced clusters. For unbalanced data sets, without an appropriate weighting,
the derived eigenvectors will be predominated by large clusters, and will con-
tain little information about small clusters. If we can give more weights to the
data points belonging to small clusters, then the derived eigenvectors would
be more useful for data clustering purposes. The ideal weighting scheme would
be the one that the sum of the weights in each cluster is the same. Without
the knowledge of the cluster membership of each data point, how can this be
achieved? Indeed, the weighting scheme employed by Normalized Cut is an
approximation to this ideal weighting scheme. It is really a smart, and best
weighting scheme without knowing the cluster membership of each data point.

3.3 Data Clustering by Non-Negative Matrix

Factorization

Data clustering techniques based on Non-Negative Matrix Factorization
(NMF) tackle the data clustering problem from the concept factorization point
of view. The model used by these techniques considers each cluster of a data
set as the embodiment of a coherent concept (or topic for document corpora),
and each data point as a linear combination of all the concepts (the cluster
centers). Because it is more natural to consider each data point as an addi-
tive rather than subtractive mixture of the underlying concepts, the linear
combination coefficients should all take non-negative values. Furthermore, it
is also quite common that the concepts comprising a data set are not com-
pletely independent of each other, and there are some overlaps among them.
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In such cases, the axes of the semantic space that capture these concepts are
not necessarily orthogonal.

Using the model described above, the data clustering problem becomes the
problem of computing the linear combination coefficients for each data point
which meet the above constraints, and then deriving the clustering result
from the computed coefficients. This can be efficiently accomplished by non-
negative matrix factorization of a certain feature matrix of the given data set.
In this section, we describe two NMF-based data clustering techniques, which
stem from our original works in recent years [24, 25].

3.3.1 Single Linear NMF Model

Assume that the given data set contains a total of N data points that form K

clusters, and that each data point i is represented by an M -dimensional feature
vector xi = [x1i, x2i, . . . , xMi]T . Further assume that uk = [u1k, u2k, . . . , uMk]
is an M -dimensional vector representing the k’th cluster center (or concept),
and that vi = [vi1, vi2, . . . , viK ]T is a K-dimensional vector containing the
linear combination coefficients for data point i. The single linear model models
each cluster center uk as the embodiment of a coherent concept, and each
data point xi as a linear combination of all the concepts [24]. Translating this
statement into mathematics, we have

xi ≈ vi1u1 + vi2u2 + · · · + viKuK . (3.22)

Writing (3.22) in matrix form, we have

X ≈ U · VT , (3.23)

where X is the M × N feature–data matrix X = [x1,x2, . . . ,xN ] in which
column i is the feature vector xi of data point i, U is the M ×K non-negative
matrix U = [u1,u2, . . . ,uK ], and VT is the K × N non-negative matrix
VT = [v1,v2, . . . ,vN ]. The goal here is to factorize X into two non-negative
matrixes U, V that minimize the following criterion function

J =
1
2
‖X − UVT ‖2 (3.24)

where ‖ · ‖2 denotes the squared sum of all the elements in the matrix.
The criterion function (3.24) can be easily minimized using existing non-

negative matrix factorization algorithms. The following describes the one used
in our implementation.
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Equation (3.24) can be re-written as:

J =
1
2
trace((X − UVT )(X − UVT )T )

=
1
2
trace(XXT − 2XVUT + UVT VUT )

=
1
2
(trace(XXT ) − 2trace(XVUT ) + trace(UVT VUT )) (3.25)

where the second step of the above derivations uses the matrix properties
trace(AB) = trace(BA), trace(A) = trace(AT ). Let U = [uij ], V = [vij ].
The above minimization problem can be restated as follows:

Minimize J with respect to U and V under the constraints of uij ≥ 0,
vxy ≥ 0, where 0 ≤ i ≤ M , 0 ≤ j ≤ K, 0 ≤ x ≤ N , and 0 ≤ y ≤ K.

This is a typical conditional minimization problem, and can be solved us-
ing the Lagrange multiplier algorithm [26]. Let αij and βij be the Lagrange
multipliers for constraints uij ≥ 0 and vij ≥ 0, respectively, and α = [αij ],
β = [βij ]. The Lagrange L is:

L = J + trace(αUT ) + trace(βVT ) . (3.26)

The derivatives of L with respect to U and V are:

∂L

∂U
= −XV + UVT V + α (3.27)

∂L

∂V
= −XT U + VUT U + β (3.28)

Using the Kuhn-Tucker conditions αijuij = 0 and βijvij = 0, we get the
following equations for uij and vij :

(XV)ijuij − (UVT V)ijuij = 0 (3.29)

(XT U)ijvij − (VUT U)ijvij = 0 (3.30)

where (A)ij denotes the element (i, j) of matrix A. These equations lead to
the following updating formulas:

uij ← uij
(XV)ij

(UVT V)ij
(3.31)

vij ← vij
(XT U)ij

(VUT U)ij
(3.32)

It is proven by Lee [27] that the objective function J is non-increasing
under the above iterative updating rules, and that the convergence of the
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iteration is guaranteed. Notice that the solution to minimizing the criterion
function J is not unique. If U and V are the solution to J , then, UD, VD−1

will also form a solution for any positive diagonal matrix D. To make the
solution unique, we further require that the Euclidean length of column vectors
in matrix U is one. This requirement of normalizing U can be achieved by1:

vij ← vij

√∑

i

u2
ij (3.33)

uij ← uij√∑
i u2

ij

(3.34)

There is an analogy to the Singular Value Decomposition (SVD) in inter-
preting the meaning of the two non-negative matrices U and V. From the
data clustering model described at the beginning of this section, it is clear
that each element vij of matrix V indicates the degree to which data point i

belongs to cluster j. If data point i solely belongs to cluster j, then vij will
take on a large value while rest of the elements in the i’th column vector vi

of matrix VT will take on a small value close to zero. Furthermore, as the
k’th column vector uk of matrix U represents the k’th cluster center, each of
its elements uik can be interpreted as the degree to which feature i belongs
to cluster k. Therefore, from the two non-negative matrices U and V, we can
derive the data clustering result directly without additional clustering steps.

In summary, the single linear model conducts the data clustering task
using the following steps:

1. Given a data set, construct the feature–data matrix X in which column i

represents the feature vector xi of data point i.
2. Perform NMF on X to obtain the two non-negative matrices U and V

using (3.31) and (3.32).
3. Normalize U and V using (3.34) and (3.33).
4. Use matrix V to determine the cluster label of each data point. More

precisely, examine each column vector vi of matrix VT , and assign data
point i to cluster c if c = arg max

j
vij .

1 When normalizing matrix U, matrix V needs to be adjusted accordingly so that

UVT does not change.
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3.3.2 Bilinear NMF Model

Section 3.3.1 described the single linear model using non-negative matrix fac-
torization. However, the single linear NMF model has the following limita-
tions. First, it requires that all cluster centers be non-negative. Although this
is not a severe constraint for text documents, it is not desirable for many
other data involving negative numbers. Second, because of the non-negative
constraint on cluster centers, the optimization algorithm has to be performed
in the original feature space of the data points, so that the powerful kernel
method cannot be applied here to further improve clustering accuracies. We
refer readers to [28] for an introduction to kernel based algorithms.

In this subsection, we present a bilinear NMF model that strives to ad-
dress the problems while inheriting all the strengths of the single linear NMF
model [25]. This new model models each cluster center as a linear combina-
tion of all the data points, and each data point as a linear combination of all
the cluster centers. With this model, the data clustering task is accomplished
by computing the two sets of linear combination coefficients which define the
degrees of association between each pair of cluster and data point. Because it
is more natural to consider that a concept (or a data point) is formed by addi-
tions rather than subtractions of the underlying data points (or concepts), in
analogy to the single linear model, we demand that the two sets of coefficients
be positive.

Let xi be an M -dimensional feature vector representing data point i where
i = 1, . . . , N , rc be the c’th cluster center where c = 1, . . . , K. Translating the
above statement into mathematics, we have

rc =
N∑

i=1

wicxi (3.35)

xi ≈
K∑

c=1

vicrc (3.36)

where wic is the non-negative association weight indicating to which degree
data point i is related to concept rc, and vic is a non-negative number showing
the projection value of xi onto each concept (cluster center) rc. Replacing rc

in (3.36) with(3.35), we have

xi ≈
K∑

c=1

vicrc =
K∑

c=1

vic

N∑

j=1

xjwjc . (3.37)
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We form the M × N feature–data matrix X = [x1,x2, . . . ,xN ] using the
feature vector of data point i as the i’th column, the N×K association matrix
W = [wic] using the association weights wic, and the N×K projection matrix
V = [vic] using the projection values vic. From (3.37) we have

X ≈ XWVT (3.38)

Equation (3.38) can be interpreted as the approximation of the original
data set X using the clustering result defined by the matrices W and V. The
bilinear model attempts to find a data cluster set that minimizes the following
criterion function:

J =
1
2
‖X − XWVT ‖2 . (3.39)

where ‖ · ‖2 denotes the squared sum of all the elements in the matrix. The
algorithm for computing the optimal solution to (3.39) is provided below.

Define K = XT X, and use the property ‖A‖2 = trace(AT A), we have

J =
1
2
trace((X − XWVT )T (X − XWVT ))

=
1
2
trace((I − WVT )T K(I − WVT ))

=
1
2
trace(K − 2VWT K + VWT KWVT )

=
1
2
(trace(K) − 2trace(WT KV) + trace(WT KWVT V)) (3.40)

where the last step of the above derivations has used the matrix properties
trace(AB) = trace(BA) and trace(A) = trace(AT ).

In (3.40), fixing V, J becomes a quadratic form of W which is denoted as
J(W). Similarly, fixing W, we get a quadratic form of V denoted as J(V).
Since quadratic form minimization/maximization is a well studied problem,
the strategy here is to optimize W and V alternatively so that we can leverage
on existing quadratic programming algorithms. In [29], Sha et al derived a
multiplicative update algorithm that computes the non-negative solution for
minimizing the general quadratic form.

Theorem 3.2. Define the non-negative general quadratic form as

F (y) =
1
2
yT Ay + bT y (3.41)

where y = [yi] is an M ×1 vector in which each element yi satisfies yi ≥ 0, A
is an arbitrary M × M symmetric semi-positive definite matrix, and b = [bi]
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is an arbitrary M × 1 vector. Let A = A+ −A−, where A+ and A− are two
symmetric matrices whose elements are all positive. Then the solution y that
minimizes F (y) can be obtained by the following iterative update

yi ← yi

[
−bi +

√
b2
i + 4(A+y)i(A−y)i

2(A+y)i

]
(3.42)

where (x)i denotes the i’th element of vector x.

To apply the above theorem to minimize the criterion function J , we need
to identify the corresponding A and b terms in (3.40). Fixing V, the two co-
efficients for the quadratic form J(W) can be obtained by taking the second
order derivative with respect to W, and by taking the first order derivative
with respect to W at W = 0, respectively. Let K = K+ −K− where K+ and
K− are the symmetric matrices whose elements are all positive, the compu-
tation of the two coefficients becomes

∂2J

∂wij∂wkl
= k+

ik(VT V)lj − k−
ik(VT V)lj (3.43)

∂J

wij

∣∣∣∣
W=0

= −(KV)ij (3.44)

where the two terms at the right hand side of (3.43) corresponds to A+ and
A− in (3.42) respectively. By substituting A and bi in (3.42) using the right-
hand side of the above two equations, we obtain the multiplicative updating
equation for computing each element wij of W:

wij ← wij

(KV)ij +
√

(KV)2ij + 4P+
ijP

−
ij

2P+
ij

(3.45)

where P+ = K+WVT V and P− = K−WVT V. For the case that matrix K
is comprised of all positive elements (i.e. K− = 0), we get a compact equation
as follows:

wij ← wij
(KV)ij

Pij
(3.46)

Similarly, we can compute each element vij of V by applying the above the-
orem to the quadratic form J(V). Fixing W, we get

∂2J

∂vij∂vkl
= δik((WT K+W)lj − (WT K−W)lj) (3.47)

J

∂vij

∣∣∣∣
V =0

= −(KW)ij (3.48)
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where δik is equal to 1 if i = k and equal to 0 otherwise. The update rule for
V is:

vij ← vij

(KW)ij +
√

(KW)2ij + 4Q+
ijQ

−
ij

2Q+
ij

(3.49)

where Q+ = VWT K+W and Q− = VWT K−W. The the compact form of
the update rule in the case of non-negative K is:

vij ← vij
(KW)ij

Q+
ij

(3.50)

Notice that the solution to minimizing the criterion function J is not unique.
If W and V are the solution to J , then, WD, VD−1 will also form a solution
for any positive diagonal matrix D. To make the solution unique, we further
require that ‖rc‖ = 1. This requirement of normalizing W can be achieved
by2:

V ← V[diag(WT KW)]1/2 (3.51)

W ← W[diag(WT KW)]−1/2 (3.52)

The above algorithm is derived with the standard kernel matrix
K = XT X. In fact each element kij of K is nothing but the inner prod-
uct (xi · xj) between the feature vectors of data points i and j. In addition
to the standard kernel matrix, the bilinear model can be readily applied to
any kernel matrix K in which kij is defined by an arbitrary kernel function
kij = K(xi,xj). Employing a kernel function amounts to performing the al-
gorithm in a high-dimensional (or even infinite-dimensional) space defined by
the kernel function. This capability of using any kernel functions for defin-
ing the kernel matrix K, as will be demonstrated in Sect. 3.5, remarkably
increases the power of the bilinear model for achieving high data clustering
accuracies for certain data sets.

The immediate outcome from the bilinear NMF model is the two sets of
coefficients W and V. Each column vector wc of W indicates the association
degrees of all the data points to cluster c, while each column vector vi of
VT indicates the projection values of data point i on all the cluster centers.
Because of such semantic meanings possessed by the two coefficient sets, it
is expected that the cluster label of each data point can be directly derived
from either W or V. For example, if the data set has a clear cluster structure

2 When normalizing matrix W, matrix V needs to be adjusted accordingly so that

WVT does not change.
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(i.e., there is only one obvious way to cluster it and there is no overlap among
the clusters), usually only one coefficient in each vi is significantly different
from zero and this coefficient corresponds to the cluster to which data point
i belongs to.

Although both W and V can be used to derive the cluster label for each
data point, it is preferable to use V because of the following reason. Consider
the case that a data point i happens to overlap the center of a particular
cluster c. Then the coefficient wic could take a large value, while coefficients
wjc for all other data points j �= i could be close to zero. Obviously this makes
the identification of cluster labels of other data points difficult if W is to be
used.

In summary, the bilinear NMF model is composed of the following steps:

1. Given a data set, construct the data–feature matrix X in which column
xi represents the feature vector of data point i.

2. Construct the kernel matrix K using an appropriate kernel function
K(xi,xj).

3. Fixing V, update matrix W to decrease the quadratic form J(W) using
(3.45).

4. Fixing W, update matrix V to decrease the quadratic form J(V) using
(3.49).

5. Normalize W and V using (3.52) and (3.51), respectively.
6. Repeat Step 3, 4 and 5 until the result converges.
7. Use matrix VT to determine the cluster label of each data point. More

precisely, examine each column vi of matrix VT . Assign data point i to
cluster x if x = arg max

c
(vic).

3.4 Spectral vs. NMF

In Sections 3.2 and 3.3, we provided detailed descriptions of spectral and
NMF-based clustering techniques, respectively. To further gain insights into
these two types of clustering techniques, in this section, we illustrate their
characteristics and differences using examples. To make more focused discus-
sions, we choose the Normalized Cut and the bilinear NMF model to represent
each type of clustering techniques. We apply the two methods to a data set
that consists of three clusters (the same data set as shown in Fig. 3.1), and
plot the data set in the spaces derived by them, respectively.
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Figure 3.4 (a) and (b) show the data distributions in the two spaces where
data points belonging to the same cluster are depicted by the same symbol.
The three graphs in (a) show the data points in the subspaces of u1–u2, u1–
u3, and u2–u3, respectively, where u1,u2,u3 are the three axes derived by
the Normalized Cut. Similarly, the three graphs in (b) show the data points
in the subspaces of v1–v2, v1–v3, and v2–v3, respectively, where v1,v2,v3

are the three column vectors of VT from the bilinear NMF model. From Fig.
3.4 we can make the following observations:

• The three clusters are well separated in both spaces.
• In the v1-v2-v3 space, every data point takes non-negative values in all

three directions, while in the u1-u2-u3 space, each data point may take
negative values in some of the directions.

• In the v1-v2-v3 space, each axis corresponds to a cluster, and all the
data points belonging to the same cluster spread along the same axis.
Determining the cluster label for a data point is as simple as finding the
axis with which the data point has the largest projection value.

• In the u1-u2-u3 space, there is no direct relationship between the axes and
the clusters. Traditional data clustering methods such as K-means have to
be applied in this space to identify the final data clusters.

The differences between the two clustering techniques can be further il-
lustrated by Fig. 3.5. Spectral clustering techniques strive to find the latent
semantic structure of the given data set by computing eigenvectors of certain
graph affinity matrices. The derived latent semantic space is orthogonal, and
each data point can take negative values in some directions in the space.

In contrast, NMF-based methods do not require the derived latent seman-
tic space to be orthogonal, and it is guaranteed that each data point takes
only non-negative values in all the latent semantic directions. These two char-
acteristics make the NMF-based methods more likely to capture the latent
semantic directions of a data set than the spectral clustering methods, be-
cause it is quite common that the concepts comprising a data set are not
orthogonal, and there are some overlaps among them. Indeed, Fig. 3.4 (a)
and (b) do serve as a good evidence that the NMF-based methods have done
a better job in capturing the latent semantic directions of the given data set.
As the direct benefit of these NMF characteristics, the cluster membership of
each data point can be easily identified from the axes derived by NMF, while
the axes derived by spectral clustering techniques do not provide a direct
indication of data partitions.
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Fig. 3.5. Illustration of the differences between Spectral and NMF Clustering tech-

niques

3.5 Case Study: Document Clustering Using Spectral

and NMF Clustering Techniques

In this section, we provide a case study where the spectral and NMF clustering
techniques are applied to the document clustering task. We briefly explain
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the document clustering basics, describe the document corpora used for the
performance evaluations, and unveil the document clustering accuracies of the
two types of clustering techniques.

3.5.1 Document Clustering Basics

For the task of document clustering, each document i is commonly repre-
sented by a term-frequency vector xi = [x1i, x2i, . . . , xNi], where N is the
total number of keywords in the given document corpus, and xji is the num-
ber of occurrences of keyword j in document i. Keywords correspond to the
words that remain after the pre-processing of stop-words removal and words
stemming. Stop-words are those that are mainly used to make a sentence
grammatically correct, such as a, the, from, to, etc. Words stemming aims
to eliminate trivial differences between two words, such as take and takes,
different and difference, by keeping only the stems of the words.

In many real applications, term-frequency vector is often weighted by
various weighting schemes [30]. The weighted term-frequency vector ai =
[a1i, a2i, . . . , aNi] is defined as

aji = L(xji)G(xji) (3.53)

where L(xji) is the local weighting for term j in document i, and G(xji) is
the global weighting for term j. Local weighting L(i) includes the following
four possible alternatives:

1. No weight: L(i) = tf(i) where tf(i) is the number of times term i occurs
in the document.

2. Binary weight: L(i) = 1 if term i appears at least once in the document;
otherwise, L(i) = 0.

3. Augmented weight: L(i) = 0.5+0.5 · (tf(i)/tf(max)) where tf(max) is the
frequency of the most frequently occurring term in the document.

4. Logarithm weight: L(i) = log(1 + tf(i)).

Possible global weighting G(i) includes:

1. No weight: G(i) = 1 for any term i.
2. Inverse document frequency (idf): G(i) = log(N/n(i)) where N is the total

number of documents in the document corpus, and n(i) is the number of
documents that contain term i.
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When the weighted term-frequency vector ai of a document i is created using
one of the above local and global weighting schemes, we further have the
choice of

1. Normalization: which normalizes ai by its length |ai|.
2. No normalization: which uses ai with its original form.

Therefore, for creating the vector ai of a document i, we have a total of
4 × 2 × 2 = 16 combinations of the possible weighting schemes.

In this case study, we used the tf-idf weighting scheme (i.e., no local weight-
ing, and the idf global weighting), and normalized each feature vector ai to
the unit length.

For NMF-based clustering, the input to the methods is simply the nor-
malized data–feature matrix X = [x1,x2, . . . ,xN ] where column vector xi is
the normalized feature vector of document i. For spectral clustering, we need
to create the graph affinity matrix A = [aij ] where aij is an affinity score to
reflect the similarity between documents i and j. Many similarity measures
can be used to define aij , and some popular choices are shown below:

1. Cosine similarity:

aij = cos(xi,xj) =
xT

i · xj

‖xi‖‖xj‖
. (3.54)

2. Cosine square similarity:

aij = cos2(xi,xj) . (3.55)

3. Radius-based similarity:

aij = exp
(
−‖xi − xj‖2

σx

)
. (3.56)

In the experimental evaluations, we used both the cosine and cosine square
similarities for creating the graph affinity matrix A. Since using higher order
similarity functions are analogous to creating kernel matrixes using kernel
functions, in this book, we use the term kernel spectral clustering to refer to
the spectral clustering methods using higher order similarity functions.
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3.5.2 Document Corpora

We used two document corpora in the case study: the TDT2 3 and the Reuters-
21578 4. These two document corpora have been among the ideal test sets for
document clustering purposes because documents in the corpora have been
manually clustered based on their topics, and each document has been as-
signed one or more labels indicating which topic/topics it belongs to. The
TDT2 corpus consists of 100 document classes, each of which reports a major
news event occurred in 1998. It contains a total of 64527 documents from six
news agencies such as ABC, CNN, VOA, NYT, PRI and APW, among which
7803 documents have a unique category label. The number of documents for
different news events is very unbalanced, ranging from 1 to 1485. In our ex-
periments, we excluded those events with less than 5 documents, which left
us with a total of 56 events. The final test set is still very unbalanced, with
some large clusters more than 100 times larger than some small ones.

On the other hand, Reuters-21578 corpus contains 21578 documents which
are grouped into 135 classes. Compared with TDT2 corpus, the Reuters corpus
is more difficult for clustering. In TDT2, each document has a unique category
label, and the content of each class is narrowly defined, whereas in Reuters,
many documents have multiple category labels, and documents in each class
have a broader variety of content. In our test, we discarded documents with
multiple category labels, and removed the classes with less than 5 documents.
This has lead to a data set that consists of 51 classes with a total of 9494
documents. Table 3.2 provides the statistics of the two document corpora.

3.5.3 Evaluation Metrics

We use the normalized mutual information as our evaluation metric. Given the
two sets of document clusters C, C′

, their mutual information metric MI(C, C′
)

is defined as:

MI(C, C′
) =

∑

ci∈C,c
′
j∈C′

p(ci, c
′

j) · log2

p(ci, c
′

j)
p(ci) · p(c′

j)
(3.57)

3 Nist Topic Detection and Tracking corpus at http://www.nist.gov/speech/

tests/tdt/tdt98/index.htm
4 Reuters-21578 distribution 1.0 at http://kdd.ics.uci.edu/databases/reuters21578/

reuters21578.html
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Table 3.2. Statistics of TDT2 and Reuters corpora

TDT2 Reuters

No. documents 64527 21578

No. docs. used 7803 9494

No. clusters 100 135

No. clusters used 56 51

Max. cluster size 1485 3945

Min. cluster size 5 5

Med. cluster size 48 30

Avg. cluster size 137 186

where p(ci), p(c
′

j) denote the probabilities that a document randomly selected
from the data set belongs to the clusters ci and c

′

j , respectively, and p(ci, c
′

j)
denotes the joint probability that this randomly selected document belongs
to both clusters ci and c

′

j at the same time. MI(C, C′
) takes values between

zero and max(H(C),H(C′
)), where H(C) and H(C′

) are the entropies of C and
C′

, respectively. It reaches the maximum max(H(C),H(C′
)) when the two sets

of document clusters are identical, whereas it becomes zero when the two
sets are completely independent. Another important character of MI(C, C′

) is
that, for each ci ∈ C, it does not need to find the corresponding counterpart
in C′

, and the value keeps the same for all kinds of permutations. To simplify
comparisons between different pairs of cluster sets, instead of using MI(C, C′

),
we use the following normalized metric M̂I(C, C′

) which takes values between
zero and one:

M̂I(C, C′
) =

MI(C, C′
)

max(H(C),H(C′))
(3.58)

3.5.4 Performance Evaluations and Comparisons

We have applied the spectral clustering, the NMF-based clustering techniques,
and their variations to the same document corpora, and conducted intensive
experimental evaluations to reveal their performances. The algorithms that
we evaluated include:

1. Traditional K-means (KM).
2. Spectral clustering based on the Average Weight criterion (AW).
3. Spectral clustering based on the Ratio Cut criterion (RC).
4. Spectral clustering based on the Normalized Cut criterion (NC).
5. Clustering based on single linear NMF model (NMF).
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6. Clustering based on bilinear NMF model (BiNMF).

Table 3.3. Performance comparisons using TDT2 corpus

K 2 3 4 5 6 7 8 9 10 avg.

KM 0.866 0.804 0.810 0.760 0.743 0.731 0.696 0.717 0.711 0.760

KM-NCW 0.943 0.909 0.893 0.893 0.824 0.834 0.785 0.798 0.805 0.854

AW 0.834 0.754 0.743 0.696 0.663 0.679 0.624 0.662 0.656 0.701

RC 0.817 0.713 0.692 0.679 0.628 0.592 0.594 0.626 0.618 0.662

NC 0.954 0.890 0.846 0.802 0.761 0.756 0.695 0.732 0.736 0.797

NMF 0.855 0.778 0.784 0.733 0.702 0.706 0.653 0.681 0.680 0.730

NMF-NCW 0.973 0.931 0.907 0.866 0.826 0.810 0.771 0.802 0.805 0.855

BiNMF 0.859 0.773 0.789 0.745 0.702 0.703 0.652 0.691 0.682 0.733

BiNMF-NCW 0.973 0.934 0.912 0.890 0.830 0.824 0.778 0.799 0.812 0.861

following are kernel version of each algorithm with cosine square kernel function

KM 0.500 0.544 0.594 0.581 0.592 0.622 0.587 0.619 0.616 0.584

KM-NCW 0.364 0.362 0.429 0.454 0.498 0.540 0.534 0.578 0.603 0.485

AW 0.815 0.811 0.771 0.739 0.713 0.716 0.677 0.680 0.712 0.737

RC 0.779 0.768 0.782 0.755 0.748 0.723 0.739 0.793 0.770 0.762

NC 0.934 0.912 0.963 0.931 0.915 0.904 0.876 0.876 0.902 0.912

BiNMF 0.836 0.836 0.809 0.775 0.763 0.747 0.714 0.727 0.744 0.772

BiNMF-NCW 0.953 0.917 0.952 0.930 0.935 0.922 0.913 0.919 0.927 0.930

In addition to their original forms, we have also applied the weighting
scheme underpinning the Normalized Cut method to the above algorithms
whenever this weighting scheme is applicable. As discussed in Sect. 3.2.4,
the Normalized Cut Weighting scheme (NCW) has the effect of automatically
balancing clusters with very different sizes so as to help a clustering algorithm
to achieve a better result when dealing with unbalanced data set. The weighted
variation of BiNMF is derived in Appendix A.

For the algorithms to which the kernel method can be applied, (i.e. KM,
NC, AW, RC and BiNMF), we have also implemented their kernel versions
and tested their performances using the cosine square similarity as the kernel.

The evaluations were conducted for the cluster numbers ranging from 2 to
10. For each given cluster number K, 50 test runs were conducted on different
clusters randomly chosen from the corpus, and the final performance scores
were obtained by averaging the scores from the 50 test runs. For algorithms
whose result is affected by initialization (i.e. KM, NMF and BiNMF), each
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Table 3.4. Performance comparisons using Reuters-215768 corpus

K 2 3 4 5 6 7 8 9 10 avg.

KM 0.404 0.402 0.461 0.525 0.561 0.548 0.583 0.597 0.618 0.522

KM-NC 0.438 0.462 0.525 0.554 0.592 0.577 0.594 0.607 0.618 0.552

AW 0.443 0.415 0.488 0.531 0.571 0.542 0.587 0.594 0.611 0.531

RC 0.417 0.381 0.505 0.460 0.485 0.456 0.548 0.484 0.495 0.470

NC 0.484 0.461 0.555 0.592 0.617 0.594 0.640 0.634 0.643 0.580

NMF 0.480 0.426 0.498 0.559 0.591 0.552 0.603 0.601 0.623 0.548

NMF-NCW 0.494 0.500 0.586 0.615 0.637 0.613 0.654 0.659 0.658 0.602

BiNMF 0.480 0.429 0.503 0.563 0.592 0.556 0.613 0.609 0.629 0.553

BiNMF-NCW 0.496 0.505 0.595 0.616 0.644 0.615 0.660 0.660 0.665 0.606

following are kernel version of each algorithm with cosine square kernel function

KM 0.249 0.205 0.243 0.272 0.302 0.312 0.325 0.330 0.356 0.288

KM-NCW 0.258 0.147 0.198 0.209 0.232 0.228 0.253 0.254 0.270 0.228

AW 0.326 0.342 0.384 0.433 0.498 0.482 0.524 0.559 0.559 0.456

RC 0.467 0.453 0.554 0.517 0.518 0.516 0.577 0.574 0.573 0.528

NC 0.485 0.478 0.587 0.586 0.597 0.582 0.633 0.633 0.642 0.580

BiNMF 0.325 0.332 0.369 0.441 0.484 0.469 0.502 0.542 0.548 0.446

BiNMF-NCW 0.454 0.472 0.582 0.569 0.579 0.602 0.612 0.627 0.628 0.569

test run consists of 10 sub-runs among which the result of the best sub-run is
selected. Tables 3.3 and 3.4 show the evaluation results using the TDT2 and
the Reuters corpus, respectively. For each k, the performance values that are
within 2x of the standard deviation of the best one are shown in bold font.

The findings from the two tables can be summarized as follows.

• Regardless of the document corpora, the Ratio Cut has the worst perfor-
mance, whereas the traditional K-means clustering method is the worst in
its kernel form.

• BiNMF-NCW always has the best performance both in its original and
kernel form.

• The use of Normalized Cut weighting usually improves the clustering per-
formance (NC vs. AW, KM-NCW vs. KM, BiNMF-NCW vs. BiNMF) with
the kernel K-means as the only exception. The improvement becomes more
obvious for the TDT2 than the Reuters.

• For the TDT2 corpus, using the cosine square kernel function improves
the clustering performance for AW, RC, NC, BiNMF and BiNMF-NCW
by at least 5%, whereas it works negatively for the Reuters corpus. Cosine
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square has the effect that brings little change to small distances while
amplifying large distances.

The results show that the kernel K-means performs very poorly compared
to other kernel clustering algorithms. This is particularly strange because the
spectral clustering algorithms based on the criterion function similar to the
K-means (i.e. AW and NC) all perform reasonably well. We hypothesize that
the poor performance of the kernel K-means is caused by the fact that it is
very prone to local optimal solutions. To test this hypothesis, we used the
correct clustering result as the initial partition. With such initial condition,
the final result of the kernel K-means improves dramatically. On the other
hand, although theoretically BiNMF could have the same problem of local
optima as K-means, in practice, its performance is quite good.

These experimental results verify the fact that clusters in TDT2 are more
compact and focused than clusters in Reuters. For such a simple data set as
TDT2, any data clustering method can produce a reasonably good result. The
difference becomes more remarkable with a complex data set such as Reuters,
and both the Normalized Cut and the NMF-based clustering techniques show
clear advantages over the traditional K-means method. The results also show
that the use of different kernels can lead to significantly different results and
suggest that higher order kernel functions are effective for the data sets that
consist of narrowly-defined clusters, while lower order kernel functions should
be used for the data sets that consist of clusters with a broader variety of
contents.

Problems

3.1. Prove that the vectors yc defined in (3.12)∼ (3.15) all satisfy the following
identities:

(a) yc · yc′ = 0 ,

(b) yc · yc = 1 .

3.2. Let λ1, · · ·λn be the eigenvalues of an n×n matrix A. Verify the following
identities:

(a) trace(A) =
∑n

i=1 λi ,

(b) |A| =
∏n

i=1 λi .
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3.3. The differential dy(x) can be approximated by the first-order term y(x+
dx)−y(x), which is linear in dx. Using this approximation, verify the following
identities

(a) d(AB) = dAB + AdB ,

(b) dA−1 = −A−1dAA−1 ,

(c) d log |A| = trace(A−1dA) .

3.4. Let A be a symmetric matrix. Prove that x̂ = maxx:‖x‖=1 xT Ax is the
eigenvector corresponding to the largest eigenvalue of A.

3.5. Low-rank matrix factorization. The best low rank factorization of an
m × n matrix X can be defined as:

arg min
U,V

‖X − UVT‖2 ,

where U and V are m × k and n × k matrices, respectively. Show that the
solution can be found using singular value decomposition.

3.6. Connection between Normalized-Cut and K-Means. Considering a
weighted version of a K-means cost function where each data point xi is
weighted by γi

J =
∑

k

∑

i∈Ck

γi‖xi − µk‖2 .

Show that with carefully chosen γi, the above cost function is equivalent to
the Normalized-Cut cost function.

3.7. Sometimes it is desirable to encourage sparse solution for NMF. One
way of doing this is to add L-1 regularization terms for U and V to the
cost function. Develop the corresponding update rules for the modified cost
function.

3.8. Show that for BiNMF, without the non-negative constraints, the solution
can be found using SVD.

3.9. Word-document relationship can be represented as a bipartite graph.
Examine how normalized-cut can be applied to this graph.

3.10. Local minima of standard K-means algorithm. Write a program to gen-
erate a set of 5000-dimensional data from a mixture of two Gaussians with unit
variance. The means of the two Gaussians are [−5, 0, · · · , 0]T and [5, 0, · · · , 0]T ,
respectively. Use standard K-means to do the clustering. Check if K-means
can separate the two Gaussians starting from an initial random partition.
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3.11. With the same data set as Problem 3.10, partition the data set according
to the sign of the first principal component. Compare the clustering result with
Problem 3.10.



Part II

Generative Graphical Models



4

Introduction of Graphical Models

One of the main goals of multimedia content analysis is to detect objects inside
an image, or to recognize events contained in a video sequence. Such detection
and recognition tasks have been tackled increasingly using supervised classifi-
cation methods in recent years. Supervised classification methods aim to learn
from given training samples a function that assigns labels to arbitrary objects.
More precisely, given a set of labeled instances S = {(x(i), y(i))}n

i=1, where x(i)

is the feature vector of the i’th instance, and y(i) is a label assigned to the
instance by a trusted source, the goal is to learn a function f : x → y, where
f(x,α) is often selected from some parametric family, and is determined by
the parameter set α.

An important characteristic of multimedia content analysis is that mul-
timedia objects exhibit much richer structures than simple objects. In some
cases, we might need to label a set of inter-related instances altogether be-
cause determining the class label of an object depends on the class labels of
spatially, temporally related objects. For example, the part-of-speech tagging,
also called grammatical tagging, is the process of automatically determining
the grammatical role (or attribute) of each word in a text. This is a typical
problem that can not be solved without examining both the word itself and
the neighboring words in the same sentence, because many words in natural
languages can represent more than one part of speech at different times. On
the other hand, detecting ”home run” events from a baseball video program is
another typical problem that requires a joint labeling of a sequence of frames,
because such a event is composed of a sequence of actions that span over
many video frames. The label of each frame can not be determined without
examining both its visual content and its context within the sequence.
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The above two examples are typical multi-label, multi-class classification
problems. In contrast to the single-label classification problems, here the task
becomes to learn a function f : x → y from a set of labeled instances, where
x = [x1, x2, . . . , xm] is the feature vector for a sequence of m instances, with
xi the feature vector of instance i, y = [y1, y2, . . . , ym] is the labels for the
m instances, and yi ∈ {l1, l2, . . . , lk}. Probabilistic graphical models are pow-
erful statistical tools for multi-label, multi-class classification problems. The
advantage of graphical models is that they are able to exploit correlations and
dependencies among different instances, often resulting in significant improve-
ments in accuracy over approaches that classify instances independently. The
modeling of correlations and dependencies is generally achieved by defining a
graph G = (V,E) that explicitly reflects the problem structure. Here V and E

are the vertex set and the edge set of graph G, respectively, and are defined in
such a way that each vertex v ∈ V represents a random variable of the target
problem, and each edge (vi, vj) ∈ E, either directed or undirected, represents
a correlation/dependency between the random variables vi and vj . If all the
edges of graph G are associated with directions, the graph is called a directed
graphical model ; otherwise, it is called an undirected graphical model . Directed
graphical models are also called Bayesian Networks or Belief Networks, while
undirected graphical models are also referred to as Markov Random Fields
in the literature. Undirected graphical models are a preferred choice in the
physics and pattern recognition communities, while directed models are more
popular in the AI and statistics communities.

Among the random variables in V , some random variables are unobserv-
able (i.e. their values are unknown), and hence are called hidden variables.
Graphical models aim to define and learn a joint probability distribution over
the set of hidden and observable random variables V . The learned joint proba-
bility distribution can be used either to estimate the probability that a hidden
variable takes on certain values given the values of the observable ones, or to
conduct various joint labeling/classification tasks.

4.1 Directed Graphical Model

We use a simple example to illustrate the concept of directed graphical mod-
els. Assume that we wish to model a home security system that consists of
burglar intrusion sensors, earthquake sensors, alarms, and the emergency call
function. The activation of either a burglar sensor or an earthquake sensor can
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trigger an alarm, which will in turn trigger an emergency call to the central
monitoring station. For this problem, we can define a graphical model shown
in Fig. 4.1, where each node represents a component of the home security
system, and each directed edge represents a conditional dependency between
two corresponding components. As each edge of the graph has a direction, the
model is a directed graphical model. Because burglar sensors and earthquake
sensors are independent of each other, there is no link between the two nodes.
Moreover, since burglar and earthquake sensors influence emergency calls only
indirectly through alarms, we say that the emergency call is conditionally in-
dependent of the burglar and earthquake sensors given the alarm, and there
are no edges linking the emergency call node with the burglar sensor and the
earthquake sensor nodes.

P(E=T) P(E=F) 
0.001 0.999 

P(B=T) P(B=F) 
0.002 0.998 

B        E P(A=T)       P(A=F) 
F        F 0.001           0.999 
F        T 0.29             0.71 
T        F 0.65             0.35 
T        T 0.95             0.05 

A P(C=T)      P(C=F) 
F 0.01            0.99 
T 0.70            0.30 

Burglary Earthquake 

Alarm 

Call 

Fig. 4.1. A simple directed graphical model

By the chain rule of probability, the joint probability of all the nodes in
the graph can be calculated as follows

P (B,E,A,C) = P (B)P (E|B)P (A|B,E)P (C|A,B,E) , (4.1)
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where each node is represented using the first letter of its name. By using the
conditional independence relationships defined by the graph, we can rewrite
this equation as

P (B,E,A,C) = P (B)P (E)P (A|B,E)P (C|A) , (4.2)

which is a more compact representation of the joint probability.
To completely define a graphical model, in addition to the graph structure,

it is also necessary to specify the parameters of the model. For a directed
graphical model, we must specify the Conditional Probability Distribution
(CPD) for each node. If the variables are discrete, this can be represented
as a table (Conditional Probability Table (CPT)), which lists the probability
that a node takes on each of its different values for each combination of its
parents’ values. Consider the same example shown in Fig. 4.1, where all the
nodes have two possible values, which we will denote by T (true) and F (false).
We see that the event ”alarm is on” (A=T) has two possible causes: either a
burglar intrusion sensor is on (B=T) or an earthquake sensor is on (E=T).
The strength of this relationship is shown in the table. For example, we see
that P (A = T |B = T,E = T ) = 0.95 (last row), and hence, P (A = F |B =
T,E = T ) = 1−0.95 = 0.05, since each row must add up to one. Because both
the B and E nodes have no parents, their CPTs specify the prior probability
of a burglar intrusion or an earthquake occurrence.

Once the structure and the parameters of a graphical model are completely
defined, we can perform various probabilistic inferences using the model. Con-
sider the graphical model shown in Fig. 4.1, and assume that we observe the
event that an emergency call is dispatched. There are two possible causes for
this: a burglar intruded the house, or an earthquake occurred. Which is more
likely? We can use Bayes’ rule to compute the posterior probability of each
explanation

P (B = T |C = T ) =
P (B = T,C = T )

P (C = T )

=

∑
e,a∈{T,F} P (B = T,E = e,A = a,C = T )

P (C = T )

=

∑
e,a∈{T,F} P (B = T )P (E = e)P (A = a|B = T,E = e)P (C = T |A = a)

P (C = T )

=
917.2 × 10−6

11784.6 × 10−6
= 0.0778 , (4.3)

where
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P (C = T ) =
∑

b,e,a∈{T,F}
P (B = b, E = e,A = a,C = T ) = 11784.6 × 10−6 .

Similarly,

P (E = T |C = T ) =
P (E = T,C = T )

P (C = T )

=

∑
b,a∈{T,F} P (B = b, E = T,A = a,C = T )

P (C = T )

=

∑
b,a∈{T,F} P (B = b)P (E = T )P (A = a|B = b, E = T )P (C = T |A = a)

P (C = T )

=
210.8 × 10−6

11784.6 × 10−6
= 0.0179 . (4.4)

Therefore, for the graphical model given in Fig. 4.1, when an emergency call
is dispatched, it is more likely that the call is caused by a burglar intrusion
than an earthquake.

It is clear from the above example that, once we have computed the joint
probability over all the random variables, we can compute conditional proba-
bilities of values of any variables, given the observed values of other variables.

4.2 Undirected Graphical Model

Figure 4.2 shows two examples of undirected graphical models. For undirected
graphical models, the vertex pairs (u, v) and (v, u) are considered to be the
same pair. A clique, which is an important concept unique to undirected
graphical models, is defined as a set of vertices S that for every two vertices
∀u, v ∈ S, there exists an edge connecting u and v. In other words, the sub-
graph induced by a clique is a complete graph. In the graph shown in Fig.
4.2(a), vertices (1,2,3), (2,3,4,5), and (5,6) form three different cliques because
each vertex has an edge to all the others within each set. The size of a clique
is the number of vertices the clique contains. A maximal clique is the one to
which no more vertices can be added. Finding whether there is a clique of a
given size in a graph (the clique problem) is an NP-complete problem.

For an undirected graph G = (V,E), the joint probability distribution is
generally defined as a product of a set of potential functions ΨC(xC)

P (x) =
1
Z

∏

C

ΨC(xC) , (4.5)
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(a) 

(b)

s t

1 

5 

2 

3 

4 

6 

Fig. 4.2. Two undirected graphical models

where x denotes the entire set of random variables defined over the vertex
set V , xC is the subset of random variables defined over clique C, ΨC(xC)
is a potential function of xC , and Z is a normalizing factor that ensures∑

x P (x) = 1. The potential functions ΨC(xC) are defined to reflect interac-
tions among neighboring vertices (random variables), and can take any form
of functions.
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Fig. 4.2(b) shows the undirected graph used by the Ising model to explain
ferromagnetic materials. Here, each vertex (random variable) represents a
ferromagnetic molecule, and takes values of +1 or −1. There exist two types
of cliques, singleton and 2-element clique, which are denoted by {s}, {s, t},
respectively, where s, t ∈ V , and s, t are two adjacent vertices in the graph.
The potential functions for the two types cliques are defined as

Ψ{s}
(
x{s}

)
= exp

(
H

k
x(s)

)
, (4.6)

Ψ{s,t}
(
x{s,t}

)
= exp

(
J

k
x(t)x(s)

)
, (4.7)

where k is the Boltzmann constant, H is the external magnetic field, and J

is the internal energy of an element magnetic dipole. The joint probability
distribution of the Ising model is defined as

P (x) =
∏

s∈V

Ψ{s}
(
x{s}

)
·
∏

{s,t}
Ψ{s,t}

(
x{s,t}

)

=
∏

s∈V

exp
(

H

k
x(s)

)
·
∏

{s,t}
exp

(
J

k
x(s)x(t)

)
. (4.8)

In defining an undirected graphical model, one can define arbitrary po-
tential functions on cliques of arbitrary sizes. However, large cliques with
fully-parameterized potential functions are problematic both for computa-
tional and statistical reasons, because the inference complexity is exponential
to the clique size, and the estimation of large number of parameters requires
a large amount of training data. Therefore, in real applications, it is more
practical to use cliques of small sizes with potentials of reduced parameters.

4.3 Generative vs. Discriminative

Besides directed and undirected graphical models, we can also categorize
graphical models as either generative or discriminative. Generative models
aim to model the joint probability distribution P (x,y) over the sets of ob-
served and hidden variables x, y, while discriminative models attempt to learn
the conditional probability P (y|x) of the hidden variable set y given the ob-
served variable set x. Generative models generally seek to model both the
observed and the hidden variables, often resulting in excessive modeling ef-
forts that are more than necessary for regular classification tasks. In contrast,
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discriminative models try to confine the modeling efforts to the hidden vari-
ables only without the attempt to modeling the observed variables, and this
often leads to less modeling efforts and better data modeling performances.

4.4 Content of Part II

Part II of this book is dedicated to the descriptions of representative gen-
erative graphical models. We first present Markov chains in Chap. 5, which
are the most fundamental and long-standing directed graphical model in the
literature. In Chap. 6, we present Markov Random Fields (MRFs) that are
a representative undirected graphical model, and are widely used in various
pattern recognition applications. In Chap. 7, we provide detailed descriptions
of Hidden Markov Models (HMMs) that are extensions of Markov chains to
allow more model freedoms while avoiding a substantial complication to the
basic structure of Markov chains. In Chap. 8, we describe general graphi-
cal models and related algorithms for learning and inferences. This chapter
serves as a summary of generative graphical models that can be considered as
an umbrella of many kinds of graphical models.
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Markov Chains and Monte Carlo Simulation

In this chapter, we present Markov chains that are the most fundamental
and long-standing graphical model for modeling dependencies among data
entities. We start by introducing various definitions, terminologies, and im-
portant properties of Markov chains, followed by describing the stationary
distribution and associated theorems. At the end of this chapter, we present
the Markov Chain Monte Carlo simulation (MCMC) that is one of the most
important applications of Markov chains for probabilistic data sampling and
model estimations.

5.1 Discrete-Time Markov Chain

A sequence {Xn}n≥0 of random variables with values in a set S is called a
discrete-time stochastic process with state space S. To simplify the notations
and descriptions, in this book we assume a discrete state space S whose ele-
ments are countable, and can be denoted by i,j,k,· · · . However, this assump-
tion does not cause a dramatic loss in generality, and most contents provided
in this chapter are applicable to a continuous state space in a straightforward
way. For a discrete-time stochastic process with a discrete state space, the
notation Xn = i means that the process is in state i at time n, or visits state
i at time n.

A discrete-time stochastic process describes a system that constantly un-
dergoes a transition between states at each discrete time instant (see Fig.
5.1). At any time t = n, the process stays in one of the states i ∈ S. At the
next discrete time instant t = n + 1, the process undergoes a change of state
(possibly back to the same state) according to a set of probabilities associated
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Fig. 5.1. A homogenous Markov chain with five states and selective state transitions

with the state i. If nothing more is said, then a full probabilistic description
of this stochastic process can be obtained by the following Bayes’ formula

P (X0 = i0,X1 = i1, . . . , Xn = in)

=
n∏

k=0

P (Xk = ik | Xk−1 = ik−1,Xk−2 = ik−2, . . . , X0 = i0) . (5.1)

In general, this equation requires the specification of the current state Xk,
as well as all the predecessor states: P (Xk = ik | Xk−1 = ik−1,Xk−2 =
ik−2, . . . , X0 = i0). If for all discrete time instants k ≥ 0 and all states
i0, i1, . . . , ik, the following equation holds,

P (Xk = ik | Xk−1 = ik−1,Xk−2 = ik−2, . . . , X0 = i0)

= P (Xk = ik |Xk−1 = ik−1) (5.2)

then, this stochastic process is called a Markov Chain. It is called a homoge-
neous Markov Chain (HMC) if in addition, both sides of (5.2) are independent
of k. Since HMC is independent of time, we can define the set of state tran-
sition probabilities pij as follows:
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pij = P (Xk = j |Xk−1 = i), i, j ∈ S . (5.3)

The matrix P = {pij}, i, j ∈ S, is called a transition matrix of the HMC.
Since its entries are probabilities, and a transition from any sate i must be to
some state, it follows that

pij ≥ 0,
∑

k∈S

pik = 1 (5.4)

for all states i, j.
The random variable X0 is called the initial state, and its probability

distribution π0 = {π0i}, i ∈ S, is called the initial state distribution, where

π0i = P (X0 = i) . (5.5)

A homogeneous Morkov chain is uniquely determined by the following
three components:

1. A state space S.
2. An initial state distribution π0.
3. A state transition matrix P = {pij}, where i, j ∈ S.

Given these three components, the probability of observing a given state se-
quence from the HMC can be computed as follows

P (X0 = i0,X1 = i1, . . . , Xn = in) =
n∏

k=0

P (Xk = ik | Xk−1 = ik−1)

= π0i0Pi0i1 · · ·Pik−1ik
(5.6)

where the first and second equalities in the above derivation used the HMC
property (5.2) and the state transition probabilities (5.3), respectively. A
Markov chain is a generative model because it describes how the observed
data sequence is generated by a process of state transitions. Furthermore, a
Markov chain is a stochastic process with one-step (or order-one) memory,
since the transition probabilities are dependent only on the preceding state.
It is noteworthy that this one-step memory restriction is no serious limitation
because processes with arbitrary finite memory length k can be modeled by
order-one Markov chains on the product space Sk.

Denote the state distribution at time n by vector vn = {vni}, where vni =
P (Xn = i) . From Bayes’s rule of exclusive and exhaustive causes,

vn+1j =
∑

i∈S

vni pij . (5.7)
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Writing (5.7) in matrix form, we have

vT
n+1 = vT

nP . (5.8)

Iteration of this equality yields

vT
n = πT

0 Pn . (5.9)

The matrix Pn is called the n-step transition matrix because its general term
is

pij(n) = P (Xk+n = j |Xk = i) . (5.10)

Using the Bayes’s chain rule and the Markov property, each entry pij(n) can
be computed as

pij(n) =
∑

i1,..., im−1∈S

pii1pi1i2 · · · pim−1j . (5.11)

The Markov property (5.2) can be extended to

P (Xn+1 = j1, . . . , Xn+k = jk |Xn = i,Xn−1 = in−1, . . . , X0 = i0)

= P (Xn+1 = j1, . . . , Xn+k = jk |Xn = i) (5.12)

for all i0, . . . , in−1, i, j1, . . . , jk. Writing A = {Xn+1 = j1, . . . , Xn+k = jk},
B = {X0 = i0, . . . , Xn−1 = in−1}, (5.12) can be written as

P (A |Xn = i, B) = P (A |Xn = i) (5.13)

P (A ∩ B |Xn = i) = P (A |Xn = i)P (B |Xn = i) (5.14)

Stating these two equations in words, it becomes that the future at time n

and the past at time n are conditionally independent given the present state
Xn = i. This shows in particular that the Markov property is independent of
the direction of time.

5.2 Canonical Representation

In real applications, it is often necessary to determine if a stochastic process
is a homogenous Markov chain or not. The following theorem is very useful
and convenient for this purpose.
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Theorem 5.1. Let {Zn}n≥1 be an i.i.d sequence of random variables with
values in an arbitrary space F . Let S be a countable state space, and f :
S × F → S be some function. Let X0 be a random variable with values in S,
independent of {Zn}n≥0. The recurrent equation

Xn+1 = f(Xn, Zn+1) (5.15)

then defines an HMC.

Proof: Iteration of the recurrent equation (5.15) yields

Xn+1 = f(Xn, Zn+1) = f(f(Xn−1, Zn), Zn+1) =

= f(f(f(Xn−2, Zn−1), Zn), Zn+1) = · · ·
= gn(X0, Z1, Z2, · · · , Zn+1) (5.16)

for all n ≥ 1. From (5.16), it follows that the state sequence {X0 =
i0, . . . , Xn−1 = in−1,Xn = i} is expressible in terms of X0, Z1, . . . , Zn, and
therefore, is independent of Zn+1. From this independence statement, we have

P (Xn+1 = j |Xn = i,Xn−1 = in−1, . . . , X0 = i0)

= P (f(i, Zn+1) = j |Xn = i,Xn−1 = in−1, . . . , X0 = i0)

= P (f(i, Zn+1) = j) (5.17)

Similarly,
P (Xn+1 = j |Xn = i) = P (f(i, Zn+1) = j) (5.18)

Therefore, we have a Markov chain, and it is homogeneous since the right-hand
side of the above two equations do not depend on n. (proof-end).

We use the following examples to illustrate applications of the above the-
orem and the HMC to some real problems.

Example 5.1. 1-D Random Walk
Let X0 be a random variable with values in Z. Let {Zn}n≥1 be a sequence of
i.i.d random variables independent of X0, that take the values +1 or −1 with
the probability distribution P (Zn = +1) = p, where p ∈ (0, 1). The process
{Xn}n≥1 defined by

Xn+1 = Xn + Zn+1 (5.19)

is called the random walk on Z. According to Theorem 5.1, the process is an
HMC.
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Example 5.2. Gambler’s Ruin [31]
Consider the following gamble game problem: Two players A and B play bets
on ”heads or tails” of a coin. A bets $1 on heads, and B bets $1 on tails at
each toss. The game ends when a player looses all his fortune. Assume that
the initial fortunes of A and B are a and b, respectively, and that heads occur
with a probability p ∈ (0, 1), we would like to compute the probability of A

winning the game, and the average duration of the game.
Denote by Xn the fortune of player A at time n. Then the process {Xn}n≥0

can be defined as a random walk Xn+1 = Xn + Zn+1 on the state space
S = {0, . . . , a, a + 1, . . . , a + b}, where Zn+1 = +1 (or Zn+1 = −1) with
probability p (or q = 1−p), and {Zn}n≥1 is i.i.d independent of X0. According
to Theorem 5.1, the process {Xn}n≥0 forms an HMC.

The game duration T can be defined as the first time n at which Xn = 0
or a + b. The probability of A winning the game is

u(a) = P (XT = a + b |X0 = a).

Instead of computing u(a) alone, we first compute

u(i) = P (XT = a + b |X0 = i)

for all states i ∈ [0, a + b] to generate a recurrent equation for u(i). If X0 =
i ∈ [1, a + b − 1], then X1 = i + 1 (or X1 = i − 1) with probability p (or q).
The probability of A winning the game with A’s initial fortune i+1 (or i−1)
is u(i + 1) (or u(i − 1)). Therefore, for i ∈ [1, a + b − 1], we have

u(i) = pu(i + 1) + qu(i − 1) (5.20)

with the boundary conditions u(0) = 0, u(a + b) = 1.
In order to compute u(i), we rewrite (5.20) as follows:

p(u(i + 1) − u(i)) − q(u(i) − u(i − 1)) = 0 .

Defining yi = u(i) − u(i − 1), we have

0 = pyi+1 − qyi , (5.21)

u(i) = yi + u(i − 1)

= yi + yi−1 + u(i − 2)

= · · ·
= y1 + y2 + · · · + yi . (5.22)



5.2 Canonical Representation 87

Consider a fair coin where p = q = 1
2 . From (5.21) we have

0 =
1
2
y2 −

1
2
y1

0 =
1
2
y3 −

1
2
y2

...

0 =
1
2
yi −

1
2
yi−1

Summing up the left and right-hand sides of the above equations obtains the
equation

0 =
1
2
yi −

1
2
y1 .

That is, for i ∈ [1, a + b − 1],
yi = y1 .

Reporting this expression in (5.22), and observing that y1 = u(1) − u(0) =
u(1), we have

u(i) = iu(1) . (5.23)

The boundary condition u(a + b) = 1 yields u(a + b) = (a + b)u(1) = 1, and
therefore gives

u(i) = iu(1) =
i

a + b
.

The above derivation can be applied to compute the average duration of
the game as well. The average duration m(i) = E[T |X0 = i] of the game
when the initial fortune of player A is i satisfies the recurrent equation

m(i) = 1 + pm(i + 1) + qm(i − 1) (5.24)

for i ∈ [1, a + b − 1]. The boundary conditions are m(0) = 0, m(a + b) = 0.
Assume that p = q = 1

2 , and use the same derivation for deriving (5.23), we
have

m(i) = im(1) − i(i − 1) . (5.25)

The boundary condition m(a + b) = 0 gives

m(a + b) = im(1) − (a + b)(a + b − 1) .

Combining this equation with (5.25) yields

m(i) = i(a + b − i) .
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5.3 Definitions and Terminologies

To prepare for the theorems in the following sections, we introduce necessary
concepts and terminologies here.

Communication and Communication Class

State j is said to be accessible from state i if there exists M > 0 such that
pij(M) > 0. States i and j are said to communicate if i is accessible from j

and j is accessible from i, and this is denoted by i ↔ j.
Given a set of states C, if one can get to any state from any other states

with one or more steps, i.e. i ↔ j, ∀ i, j ∈ C, then the set of states is said to
form a communication class.

Figure 5.2 shows a transition graph with seven states. It can be easily ver-
ified that there are two groups of states, {1, 2, 3, 4} and {5, 6, 7}, where each
pair of states within the same group communicate to each other, but any two
states belonging to different groups do not. Therefore, according to the defin-
itions given above, this transition graph is composed of two communications
classes.

Irreducible

If there exists only one communication class, then the chain, its transition
matrix, and its transition graph, are said to be irreducible.

Figure 5.3 shows another seven-state transition graph. It is clear that any
state in the graph can be accessed from any other states with one or more
steps. Therefore, the entire transition graph forms only one communication
class, and according to the definition, it is irreducible.

Period

For any irreducible Markov chain, one can find a unique partition of the chain
into d classes C0, C1, . . . , Cd−1 such that

∀k, i ∈ Ck,
∑

j∈Ck+1

pij = 1,

where Cd = C0, and d is maximal. The number d ≥ 1 is called the period of
the chain (see Fig. 5.4).
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……… 

C0 C1 Cd-1

Fig. 5.4. A transition graph of period d

Given an irreducible Markov chain of period d with the cyclic classes
C0, C1, . . . , Cd−1, its transition matrix takes the following canonical block
structure:

P =

⎛

⎜⎜⎜⎜⎜⎜⎝

C0 C1 C2 · · · Cd−1

C0 0 A0 0 · · · 0
C1 0 0 A1 · · · 0
C2 0 0 0 · · · 0
...

...
...

...
. . .

...
Cd−1 Ad−1 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

It can be proven with generality that, regardless of the value of d and the
entries of the block matrixes in P, Pd will always become a block-diagonal
matrix as follows:

Pd =

⎛

⎜⎜⎜⎜⎜⎜⎝

C0 C1 C2 · · · Cd−1

C0 E0 0 0 · · · 0
C1 0 E1 0 · · · 0
C2 0 0 E2 · · · 0
...

...
...

...
. . .

...
Cd−1 0 0 0 · · · Ed−1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The d-step transition matrix Pd is also a stochastic matrix, and each of the
cyclic classes C0, C1, . . . , Cd−1 forms a different communication class, as the
diagonal block structure suggests.

Recurrence and Transience

Let Ti be the time between two successive visits to state i ∈ S. State i is
called recurrent if
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P (Ti < ∞) = 1 , (5.26)

and is called transient otherwise. A recurrent state i is called positive recurrent
if

E[Ti] < ∞ , (5.27)

and is called null recurrent otherwise.
By the above definitions, an irreducible HMC is positive recurrent when

any given state is visited infinitely often and moreover, when the average time
between two successive visits to this state is finite.

Ergodic

An homogenous Markov chain is called ergodic if it is aperiodic, irreducible,
and positive recurrent.

It is noteworthy that recurrence and transience are the class properties
in the sense that if states i and j communicate, then they are either both
recurrent or both transient (see Problem 5.12 at the end of this chapter).
Therefore, an irreducible Markov Chain has all its states possessing the same
nature: transient, positive recurrent, or null recurrent. To determine the cat-
egory of each state of a chain, it suffices to study only one state, and one can
study the state that is the easiest to infer.

5.4 Stationary Distribution

A probability distribution π on the state space S satisfying the following
equation

πT = πT P (5.28)

is called a stationary distribution of the transition matrix P, or of the corre-
sponding HMC. Iterating (5.28) for n times, we have

πT = πT Pn (5.29)

for all n ≥ 0. What means by this equation is that, if the initial distribution
of the HMC is π, it keeps the same distribution forever. In this sense we say
that the chain is stationary, in steady state, or in equilibrium.

Stationary distribution is a very important concept that has many use-
ful properties. The following Detailed Balance Theorem provides a sufficient
condition for a distribution π to be a stationary distribution.
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Theorem 5.2 (Detailed Balance). Assume that P is a transition matrix
for an HMC with the state space S, and that π is a probability distribution on
S. If for all i, j ∈ S,

π(i)pij = π(j)pji , (5.30)

then π is a stationary distribution of P.

Proof: For fixed i ∈ S, summing both sides of (5.30) with respect to j ∈ S

yields ∑

j∈S

π(i)pij =
∑

j∈S

π(j)pji .

Since the left-hand side is
∑

j∈S

π(i)pij = π(i)
∑

j∈S

pij = π(i) ,

we have
π(i) =

∑

j∈S

π(j)pji

for all i ∈ S. (proof-end).
The theorem below provides us with some insight into the physical meaning

of a stationary distribution. The proof of the theorem is can be found in [31].

Theorem 5.3. Let P be the transition matrix of an irreducible recurrent HMC
{Xn}n≥0, and T0 be the return time to state 0. Define for all i ∈ S

xi = E0

⎡

⎣
∑

1≤n≤T0

δ(Xn = i)

⎤

⎦ , (5.31)

where E0[U ] is the expectation of random variable U (the subscript 0 is used
here because this expectation is computed given the parameter T0). Then, for
all i ∈ S,

xi ∈ (0,∞), xi =
∑

j∈S

xj pji . (5.32)

In the above theorem, δ(cond) is the delta function that equals one if the
argument cond is true, and equals zero otherwise. xi is called an invariant
measure of the HMC, and is essentially the expected number of visits to state
i before returning to state 0. Note that for time instant n ∈ [1, T0], Xn = 0
if and only if n = T0. Therefore,

x0 = 1 . (5.33)
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Additionally, by summing up both sides of (5.31) with respect to i ∈ S, and
with some derivations, we obtain the following equalities:

∑

i∈S

xi = E0

⎡

⎣
∑

i∈S

∑

1≤n≤T0

δ(Xn = i)

⎤

⎦

= E0

⎡

⎣
∑

1≤n≤T0

{
∑

i∈S

δ(Xn = i)

}⎤

⎦

= E0

⎡

⎣
∑

1≤n≤T0

1

⎤

⎦

= E0[T0] (5.34)

Equality (5.34) and the definition of positive recurrence directly give the
following theorem.

Theorem 5.4. An irreducible recurrent HMC is positive recurrent if and only
if its invariant measures xi satisfy

∑

i∈S

xi < ∞ . (5.35)

From the invariant measures xi, we can easily create a stationary distrib-
ution π of the HMC using the following equation:

π(i) =
xi∑

j∈S xj
. (5.36)

In particular, for i = 0, using (5.33) and (5.34), we have

π(0) =
x0∑

j∈S xj
=

1
E0[T0]

.

Since state 0 does not play a special role in the analysis, this equality is true
for all i ∈ S. Therefore, the above analysis yields the following theorem.

Theorem 5.5 (Mean Return Time). Let π be the stationary distribution
of an irreducible positive recurrent chain, and let Ti be the time between two
successive visits to state i. Then

π(i)Ei[Ti] = 1 . (5.37)

The Mean Return Time Theorem provides a clear interpretation on the
physical meaning of a stationary distribution: it is the reciprocal of the mean
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return time to each state of an ergodic HMC. From this interpretation, and
with some other analysis, one can easily arrive at the following theorem (see
Problem 5.13 at the end of this chapter).

Theorem 5.6. An irreducible homogeneous Markov chain is positive current
if and only if there exists a stationary distribution. When the stationary dis-
tribution exists, it is unique and positive.

5.5 Long Run Behavior and Convergence Rate

Given a homogenous Markov chain and an arbitrary initial distribution µ,
what is the long-run behavior of the chain? Will the chain converge to its
stationary distribution? Under what conditions will the chain converge to
its stationary distribution? If it converges, what is the convergence speed?
The answers to these questions form the central notion of the HMC stability
theory, and are the basis for Gibbs sampling and Monte Carlo simulation.
Gibbs sampling and Mote Carlo simulation are the powerful statistical tools
that have been widely used for probabilistic inferences and model estimations.

In this section, we present several important theorems that address the
above important questions. The following theorem provides a sufficient con-
dition for an HMC to converge to the stationary distribution.

Theorem 5.7 (Convergence to Stationary Distribution). Let P be the
transition matrix of an ergodic (i.e., aperiodic, irreducible positive recurrent)
Markov chain with the countable state space S and the stationary distribution
π. For any arbitrary probability distributions µ on S,

lim
n→∞

|µT Pn − πT | = 0 . (5.38)

The proof of this theorem requires the understanding of the coupling the-
ory that is out of the scope of this book. Interested readers are directed to
the book [32] for additional information and historical comments.

We use the following example to verify the correctness of the above theo-
rem.

Example 5.3. Convergence to Stationary Distribution
Consider a five-state ergodic Markov chain depicted in Fig. 5.5. Its transition
matrix P is defined as follows:
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P =

⎛

⎜⎜⎜⎜⎜⎝

0 0.3 0.2 0 0.5
0.5 0 0.5 0 0
0 0.5 0.2 0.3 0
0 0 0.7 0 0.3

0.3 0 0.2 0.5 0

⎞

⎟⎟⎟⎟⎟⎠
.

We conduct experiments using the following three initial distributions on the
state space:

µ1 = [1, 0, 0, 0, 0], µ2 = [0.5, 0, 0.5, 0, 0] ,µ3 = [0.2, 0.2, 0.2, 0.2, 0.2] .

Figure 5.6 shows how each state distribution µi, i = 1, 2, 3, evolves after each
iteration of state transitions. In the figure, the i’th column in the n’th row
corresponds to µT

i (n) = µT
i (n − 1)P, for n ≥ 2. It is clear from the figure

that no matter with which initial distribution the chain starts, it converges
to the same stationary distribution with no exception. In this example, the
stationary distribution is π = [0.15, 0.22, 0.35, 0.17, 0.12].

Theorem 5.7 has addressed the problem of under what conditions a Markov
chain converges to a stationary distribution. When applying this theorem to
statistical simulation problems, one is concerned about the speed of conver-
gence to the stationary distribution, because it determines the “burn-in” time
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Fig. 5.5. An ergodic transition graph
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Fig. 5.6. Convergence to the stationary distribution

of the simulation for getting an accurate estimation result. Indeed, the speed
of convergence depends on the eigenstructure of the transition matrix P, and
the Perron-Frobenius theorem provides the answer to this problem.

Theorem 5.8 (Perron-Frobenius Theorem). Let A be a nonnegative1

primitive2 r × r matrix. Then

• There exists a real-valued eigenvalue λ1 of A such that λ1 > 0, and λ1 >

|λj | for any other eigenvalues λj.

1 A matrix A is called nonnegative (or positive) if all its entries are nonnegative

(or positive).
2 A nonnegative square matrix A is primitive if and only if there exists an integer

k such that Ak > 0 element-wise.
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• The eigenvalue λ1 is simple. In other words, both its algebraic3 and geo-
metric multiplicity4 are equal to one.

• The associated left and right eigenvectors u1, v1 are both positive.
• Let λ2, λ3, . . . , λr be the other eigenvalues of A ordered in such a way that

λ1 > |λ2| ≥ · · · ≥ |λr| . (5.39)

Then
An = λn

1v1uT
1 + O(nm2−1|λ2|n) . (5.40)

where m2 is the algebraic multiplicity of λ2.
• If in addition, A is stochastic, then λ1 = 1.

Furthermore, if A is not nonnegative primitive but satisfies the following con-
ditions, we have

• If A is stochastic and irreducible with period d > 1, then there are exactly d

distinct eigenvalues of modulus5 1, and all other eigenvalues have modulus
strictly less than 1.

• If A is stochastic but not irreducible, then the algebraic and geometric
multiplicities of the eigenvalue 1 are equal to the number of communication
classes.

The proof of the theorem can be found in [33, 34].
In the Perron-Frobenium theorem, (5.40) can be loosely verified using

simple linear algebra and rest of the results in the Theorem. Since matrix A
is a nonnegative primitive r × r matrix, there exists a nonsingular matrix D
of the same dimension such that

DAD−1 = Λ (5.41)

where Λ = diag(λ1, . . . , λr), and λ1, . . . , λr are the eigenvalues of A. Let
UT = D, and V = D−1, it follows from (5.41) that

UT A = ΛUT (5.42)

AV = VΛ (5.43)

3 An eigenvalue λ of a matrix A has algebraic multiplicity k if (x−λ)k is the highest

power of (x − λ) that divides the matrix characteristic polynomial det(A − λI).
4 The geometric multiplicity of an eigenvalue λ of a matrix A is the dimension of

the subspace of vectors x for Ax = λx.
5 The modulus of a eigenvalue λ is its absolute value |λ|.
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Therefore, the i’th row of UT is a left eigenvector, and the i’th column of
V is a right eigenvector associated with the eigenvalue λi. Also, a simple
manipulation on (5.41) yields

A = D−1ΛD = VΛUT (5.44)

An = VΛnUT =
r∑

i=1

λn
i viuT

i (5.45)

If A is the transition matrix of a Markov chain, it follows from the Perron-
Frobenium Theorem that

1 = λ1 > |λ2| ≥ · · · ≥ |λr| . (5.46)

From (5.45), (5.46), we reach the following equation:

An = λn
1v1uT

1 + λn
2v2uT

2 + · · ·
= λn

1v1uT
1 + O(|λ2|n) ,

which is a loose version of (5.40).
If A is the transition matrix of an irreducible and aperiodic Markov chain,

then as Theorem 5.6 stipulates, the chain has a stationary distribution π that
satisfies:

πT A = πT .

Additionally, since A is a stochastic matrix, it further satisfies

A1 = 1 .

where 1 is the vector with all the entries equal to one. Clearly, π and 1 are the
left and right eigenvectors of the eigenvalue λ1 = 1 respectively, and therefore,
AT can be written as:

An = 1πT + O(nm2−1|λ2|n) .

The conclusions of the Perron-Frobenium theorem can be illustrated by
the following example.

Example 5.4.
Consider the ergodic Markov chain described in Example 5.3. Its transition
matrix P has the following five eigenvalues:

λ1 = 1.0, λ2 = −0.65 + 0.12i, λ3 = −0.65 − 0.12i,

λ4 = 0.25 + 0.19i, λ5 = 0.25 − 0.19i.
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Fig. 5.7. Plots of |c1|, |c2|, and |c4| as functions of n

Because matrix P is primitive and stochastic, as predicted by the Perron-
Frobenium theorem, its largest eigenvalue λ1 is real-valued, simple, and equals
to one. The rest of eigenvalues satisfy:

1 = λ1 > |λ2| = |λ3| > |λ4| = |λ5| .

Because P has the period d = 1, all the eigenvalues except λ1 have modules
strictly less than 1. Note that λ2,λ3, and λ4,λ5 are the two pairs of comple-
mentary eigenvalues.

To examine how quickly an arbitrary initial distribution µ converges to
the stationary distribution, we compute the following quantity,

µT Pn = µT 1πT +
5∑

i=2

λn
i µT viuT

i

= c1π
T +

5∑

i=2

ciuT
i ,

where π is the stationary distribution, ui, vi are the left and right eigenvectors
of λi, c1 = µT 1, ci = λn

i µT vi are some scalar numbers that can be considered
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as coefficients of respective left eigenvectors. Figure 5.7 depicts |c1|, |c2|, and
|c4| as functions of n, where µ = [1, 0, 0, 0, 0] was used for the computation.
We omit the plots of |c3| and |c5| because λ2, λ3, and λ4, λ5 are the two pairs
of complementary eigenvalues, so that |c2| = |c3|, |c4| = |c5|. From the figure,
it is obvious that when n increases, |c1| stays at the same level constantly,
whereas |c2| and |c4| approach to zero rapidly. As a result, µT Pn converges
to the stationary distribution π when n becomes large enough. Because |c4|
diminishes to zero even faster than |c2|, the speed of convergence is dominated
by |c2|, or more precisely, by O(|λ2|n).

5.6 Markov Chain Monte Carlo Simulation

In this section, we first describe the objectives and typical applications of
statistical sampling/simulation techniques. Then, we briefly introduce the re-
jection sampling method that is an ancestor of the Morkov chain Monte Carlo
(MCMC) method, and reveal the characteristics of this method. After these
introductions, we provide a detailed coverage of the MCMC method and an
example to demonstrate its real implementation. We also compare MCMC
with rejection sampling, and discuss the pros and cons of the two methods.

5.6.1 Objectives and Applications

In statistical modeling and inference, there are many complex problems for
which one can not obtain closed-form descriptions of their probability distri-
butions P (X). In most cases, one can define a function f(X) that computes
P (X) up to a normalizing constant

P (X) =
f(X)

Z
,

where Z =
∫

x∈S
f(x)dx can not be computed either because f(X) is too

complex, or because the state space S is too large to compute the integral.
In such circumstances, statistical sampling and simulation techniques become
valuable and important tools for getting fair samples from target probability
distributions. In general, statistical sampling and simulation techniques can
be used to fulfill the following tasks.

1. Simulation: Draw typical (fair) samples from a probability that governs
a system:
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x ∼ P (X) . (5.47)

For many complex systems, their states are governed by some probability
models, and the probability models are too complex to be described using
closed-form equations. The fair samples generated by statistical sampling
will show us what states are typical of the underlying system.

2. Integration/estimation: Compute integrals in very high dimensional
spaces or estimate the expectations of certain quantities by empirical
means:

EP [f(X)] =
∫

S

f(x)P (x)dx = lim
n→∞

1
n

n∑

i=1

f(xi) , (5.48)

where S is the state space of the system, (x1, . . . , xn) are a finite set
of samples drawn from the probability density function P (X). Equation
(5.48) is called the law of large numbers, and is a powerful means for
computing an approximation of an integral or expectation when the exact
integral is difficult to compute either due to a high dimensionality of the
space, or due to an insufficient knowledge about the probability density
function P (X).

3. Optimization: Identify the most probable state of the underlying system
governed by the probability model P (X):

x∗ = arg max P (x) . (5.49)

Optimization is a problem of great interest in statistical inferences because
it can be used to compute the most probable interpretation for an input
given the underlying probability model.

4. Learning: Acquire the parameters θ that give the maximum likelihood
estimation of the probability model P (X; θ) governing the target sys-
tem. Statistical sample and simulation techniques are commonly used for
probability model estimations when the models are too complex to make
analytic estimations.

5.6.2 Rejection Sampling

Rejection sampling is an early statistical sampling method that is considered
as an ancestor of the MCMC method. It aims to draw independent samples
from a probability distribution P (X) = f(X)/Z. The assumption here is that
we do not know the normalizing constant Z, but can evaluate f(X) at any
position x we choose. It is noteworthy that this sampling method, as well
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Fig. 5.8. Illustration of the rejection sampling algorithm

as the following MCMC method, can be applied to P (X) that either gives
probabilities for discrete X or is a probability density function over continuous
X.

The main ingredient of rejection sampling is that, instead of sampling
directly from P (X), we use a distribution Q(X) from which sampling is easier.
The only restriction for Q(X) is that we must be able to identify a constant
c > 1 for which f(X) ≤ cQ(X) for all x. Furthermore, the constant c should
be as small as possible in order to achieve an efficient sampling process.

With the above settings, the rejection sampling algorithm can be described
as follows:

1. Draw a sample xi from Q(X).
2. Draw a sample yi from an uniform distribution with the range [0, cQ(xi)].
3. if yi ≤ f(xi), accept xi as a sample from P (X); otherwise, reject the

sample.
4. Repeat Step 1 ∼ 3 until the number of samples reaches the predefined

value.
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The rejection sampling algorithm can be justified using the following sim-
ple derivations (see Fig. 5.8). The cumulative distribution P (a ≤ X ≤ b) on
interval [a, b] is defined as

P (a ≤ X ≤ b) =
∫ x=b

x=a

P (x)dx . (5.50)

Following the rejection sampling algorithm described above, the computation
of (5.50) becomes as follows:

P (a ≤ X ≤ b) = P (a ≤ X ≤ b | Y ≤ f(X))

=
P (a ≤ X ≤ b, Y ≤ f(X))

P (Y ≤ f(X))

=
P (a ≤ X ≤ b, Y ≤ f(X))

P (−∞ < X < ∞, Y ≤ f(X))

=

∫ x=b

x=a

∫ y=f(x)

y=0
1 dydx

∫ x=∞
x=−∞

∫ y=f(x)

y=0
1 dydx

=

∫ x=b

x=a
f(x)dx∫ x=∞

x=−∞ f(x) dx
. (5.51)

Clearly, the unknown normalizing constant Z is canceled out in (5.51), and in-
dependent samples from the target probability distribution P (X) are obtained
via the rejection sampling process.

In addition to the above mathematical derivations, a more intuitive inter-
pretation of the rejection sampling algorithm can be given as follows (see Fig.
5.8). Samples are drawn from the instrumental distribution Q(X) instead of
the target distribution P (X). At each location xi ∼ Q(X), cQ(xi) is evaluated
and a random height yi ∼ U [0, cQ(xi)] is drawn, where U [0, cQ(xi)] denotes
an uniform distribution with the range [0, cQ(xi)]. Here, yi gives a random
position drawn uniformly from under the curve cQ(xi). By accepting only
xi for which yi ≤ f(xi) and rejecting others, we end up with points drawn
uniformly from the area under the curve f(X), equivalent to drawing samples
from the target distribution P (X).

The probability that a point xi is accepted is simply the ratio of the areas
underneath f(X) and cQ(X). As a function of c, this probability can be
written as

Pacpt(c) =
Z

c
, (5.52)

where we assume that the instrumental distribution Q(X) is normalized so
that

∫∞
−∞ Q(x)dx = 1. Thus the number of samples from Q(X) required for a
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single sample from P (X) follows a geometric distribution with mean c
Z , and

this explains why the constant c should be chosen as small as possible in order
to achieve an efficient sampling.

From the above discussions it is clear that with the rejection sampling
algorithm, one needs to use an instrumental distribution Q(X) that is sim-
ilar to the target distribution P (X) in order for the sampling process to be
efficient. Using an instrumental distribution Q(X) that is quite different from
P (X) will result in a smaller Pacpt, which means that one needs to draw many
samples from Q(X) to get one accepted sample.

Another characteristic of rejection sampling is the complete independence
between samples generated by the process. While sample independence is good
for obtaining i.i.d. sample sets, it is another main cause for the inefficiency
of the rejection sampling algorithm. Take Fig. 5.8 as an example. The in-
strumental distribution Q(X) used in this example is a Gaussian distribution
centered at xc, while the target distribution P (X) has two peaks centered at
xc1 , xc2 , respectively. The instrumental distribution Q(X) tends to generate
most samples around the neighborhood of xc, and few samples in the vicinities
of xc1 , xc2 . Because the sampling process generates each sample without being
influenced by the location of the previous sample, after it happens to visit the
vicinity of xc1 , for example, the process will be very likely to jump back to
the neighborhood of xc again, generating the next sample from there, which is
likely to be rejected with a high probability. As a result, most samples drawn
from Q(X) (a Gaussian distribution) are rejected, and only a small percentage
of samples are accepted as the output. If the number of samples drawn from
the sampling process is not large enough, one may not get a sample set that
is unbiased, and typical of the target distribution P (X).

5.6.3 Markov Chain Monte Carlo

Same as rejection sampling, Markov Chain Monte Carlo can generate samples
from a complex probability function P (X) that is defined over either continu-
ous or discrete X. Again, for description simplicity, we present the technique
for discrete probability functions in this section. As will be revealed later, the
Makovian characteristic of the MCMC method makes it much more efficient
than the rejection sampling and other sampling techniques for drawing fair
samples from complex distributions, especially when the state space is very
large and high dimensional.
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The basic idea of the MCMC algorithm is to find an ergodic transition
matrix P on the state space S so that its stationary distribution π is the
target distribution. Since P is ergodic, it follows from Theorem 5.7 that for
any initial distribution µ, the chain is guaranteed to converge to its stationary
distribution π:

lim
n→∞

|µT Pn − πT | = 0 .

Knowing the fact that an ergodic Markov chain will converge to the sta-
tionary distribution π regardless of its initial distribution µ, now the problem
becomes: how can we find such an ergodic transition matrix P that its sta-
tionary distribution π is the target distributon? The most common practice
is that we first construct an ergodic transition matrix Q, called the candidate
generating matrix , that has some good properties (e.g. fast convergence rate,
simple structure, etc), and then twist Q a bit so that the stationary distri-
bution of the new matrix equals the target distribution π. More precisely,
from Theorem 5.2 we know that π is the stationary distribution of Q if for
all i, j ∈ S,

π(i)qij = π(j)qji .

In case entries qij of Q do not satisfy this detailed balance test, we can insert
factors αij such that

pij = qijαij , π(i)pij = π(j)pji . (5.53)

In the literature, αij are called candidate acceptance rates , or candidate ac-
ceptance probability . There are several ways of making αij to satisfy the above
condition, and we enumerates two most famous ones below [35, 36].

Metropolis Algorithm

αij = min
(

1,
π(j)qji

π(i)qij

)
. (5.54)

A spacial case of the Metropolis algorithm is that the candidate generating
matrix Q is symmetric so that (5.54) becomes

αij = min
(

1,
π(j)
π(i)

)
. (5.55)
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Barker’s Algorithm

αij =
π(j)qji

π(j)qji + π(i)qij
. (5.56)

In the special case of a symmatric candidate generating matrix Q,

αij =
π(j)

π(j) + π(i)
. (5.57)

One can easily verify that αij ’s computed by (5.54) ∼ (5.57) all satisfy
the detailed balance test (5.53), and therefore the target distribution π is the
stationary distribution of the chain.

In summary, the MCMC algorithm can be described as follows.

1. Construct an ergodic transition matrix Q = {qij} with a fast convergence
rate to its stationary distribution.

2. Start with a state i.
3. Choose the next tentative state j with probability qij .
4. Calculate αij using either of the equations (5.54) ∼ (5.57).
5. Accept j as the new state with probability αij ; otherwise, the next state

is the same state i. This operation ensures that the resulting probability
of moving from state i to j is given by pij = qijαij .

6. Repeat Step 3 to 5 until the number of sampled states reaches the prede-
fined threshold.

In implementing the above MCMC algorithm, there are several design is-
sues that need to be considered in order to accomplish a good performance for
the simulation process. First, as the Perron-Frobenius theorem has revealed,
the convergence rate depends greatly on the second largest eigen-value mod-
ulus |λ2| of the transition matrix. Therefore, one needs to choose a transition
matrix with a small |λ2| to achieve a fast convergence rate of the simulation
process. Second, the speed of convergence also depends on the acceptance
probability aij that determines how fast we can move forward along the simu-
lation process. In other words, we want aij to be as close to one as possible at
all times so that we can keep the rejection rate for the proposed new states as
low as possible. Indeed, the value of aij reflects the degree of closeness between
the candidate-generating matrix Q and the target matrix P. It is clear from
(5.53) that the closer the two corresponding entries pij and qij are, the closer
to one aij is. Therefore, to quickly move the simulation process forward, one
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needs to choose a candidate-generating matrix Q that is as close to the target
matrix P as possible. This requires a good understanding about the target
problem, as well as a certain know-how on the MCMC design.

We use the following example to demonstrate a real implementation of the
MCMC algorithm for sampling a target probabilistic distribution.

Example 5.5. MCMC Implementation
Consider a 2-D probability distribution depicted in Fig. 5.9. Its density func-
tion is known up to a normalizing factor Z 6:

P (X) =
1
Z

(
exp(−U4

1 − 16U4
2 ) +

1
10

exp(−1
2
(X2

1 + X2
2 ))

)
, (5.58)

where X = (X1,X2)T , and
(

U1

U2

)
=

[(
X1

X2

)
−

(
5
3

)]T

·
(

0.8 0.6
−0.6 0.8

)
.

Our task is to use the MCMC algorithm to generate a set of random samples
that follow this probability distribution.

In this example, we use the following Gaussian distribution with an unit
variance as the candidate-generating function:

P (Xn+1 = xn+1 | Xn = xn) =
1
2π

exp
(
−1

2
(xn+1 − xn)T (xn+1 − xn)

)
.

(5.59)
If we consider X as a continuous variable and want to draw real-value samples
for X, then (5.59) serves as the state transition (or candidate-generating) func-
tion, and it is impossible, and unnecessary to define the candidate-generating
matrix Q. In contrast, if X is considered as a discrete variable defined on a dis-
crete state space S, then we define the candidate-generating matrix Q = {qij}
as follows:

qij = P (Xn+1 = j | Xn = i) =
1
2π

exp
(
−1

2
(j − i)T (j − i)

)
. (5.60)

We start the simulation process from the state x0 = 0, and use the
metropolis algorithm to compute the acceptance rate αij at each iteration
of the process. The entire simulation algorithm for continuous variable X is
summarized as follows (the algorithm for discrete variable is straightforward
from the continuous version):
6 In fact Z can be easily computed for this probability density function. The prob-

lem is trivial for the MCMC algorithm. We use the trivial problem to demonstrate

a real MCMC implementation
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Fig. 5.9. The target probability distribution

1. Set n = 0, and start with xn=0.
2. Choose the next candidate sample xn+1 with probability P (xn+1|xn) de-

fined by (5.59).
3. Calculate the acceptance rate αij using (5.54), where π(j)/π(i) =

P (xn+1)/P (xn) is computed using (5.58) (the unknown normalizing
factor Z is canceled out in computing this fraction), and qji/qij =
P (xn|xn+1)/P (xn+1|xn) = 1 when computed using (5.59). Accept the
sample xn+1 with probability αij ; otherwise, the next sample is the same
as xn.

4. Set n = n + 1. If n ≥ N , where N is the user defined number, terminate
the simulation process; otherwise, go to Step 2.

Figure (5.10)(a) ∼ (d) plot the sampling results generated by the MCMC
algorithm at 2000, 10000, 20000, and 100000 iterations, respectively. It is
interesting to see that the first 2000 samples capture only half (one heap)
of the true distribution, and this heap has been sampled with an incorrect
scale. Obviously, at this stage, the simulation process has yet to reach its
stationary distribution, and the samples generated so far do not reflect the
target distribution very much. When the number of iterations reaches 10000,
the two heaps of the target distribution has been captured by the sampling
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(a) Result at 2000 iterations (b) Result at 10000 iterations

−5

0

5

10

−5

0

5

10
0

100

200

300

400

500

−5

0

5

10

−5

0

5

10
0

500

1000

1500

2000

2500

(c) Result at 20000 iterations (d) Result at 100000 iterations

Fig. 5.10. Data sampling by the MCMC algorithm

result. When the number of iterations further increases, the sampling result
becomes smoother, and closer to the true target distribution.

Note that the simulation process demonstrated in this example has a rela-
tively slow convergence rate: it requires more than 20000 iterations to obtain
a reasonable approximation of the target distribution. This is mainly because
there is a big difference between the distributions of the candidate-generating
function and the target function: the candidate-generating function (5.59) is
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a cylindrical Gaussian (with a unit variance) which spreads uniformly along
all directions, while the target distribution (5.58) is composed of two heaps
which are arranged along a line. Since qij = qji (the candidate-generating
function is symmetrical), αij = π(j)

π(i) . As (5.59) tends to generate candidate
states within an unit-size circular area with a high probability, the simulation
process is prone to be stuck in a neighborhood of the same area for a long
time before it jumps onto a different area. This explains why the sampled data
at the first 2000 iterations capture only one heap of the target distribution.
It takes many iterations to jump from one heap to the other, therefore, the
simulation process needs a long time to capture the entire picture of the target
distribution.

5.6.4 Rejection Sampling vs. MCMC

In Sect. 5.6.2, we explained that rejection sampling generates each sample
independent of the previous samples, and that this sample independence is
one of the main causes for the inefficiency of the algorithm. In contrast, the
MCMC algorithm generates a sequence of samples using an ergodic Markov
chain. When a sample xn is generated, the next candidate sample xn+1 is
generated with probability P (xn+1|xn) (the candidate-generating function),
which is statistically dependent on xn. When a Gaussian distribution is used
to define P (xn+1|xn), such as in the example 5.5, each candidate sample
xn+1 will be generated in the neighborhood of the previous sample xn. Figure
5.11 illustrates this characteristic using a contour map. In this figure, the
sampling process starts from an arbitrary point x0. Then, the candidate-
generating Gaussian distribution is moved so as to be centered at x0, and the
next candidate sample x1 is likely to be generated in the neighborhood of x0.
If x1 is rejected, the center of the Gaussian distribution will stay at x0, and
another candidate sample will be generated. If x1 is accepted, the center of
the Gaussian distribution will be moved to x1, and the next candidate sample
x2 will be generated in the vicinity of x1. If x2 happens to be in a peak
area of the target distribution, it will be accepted with a high probability,
and will become the next center of the Gaussian distribution. Because of
this, when the sampling process happens to visit a peak area of the target
distribution, it will wander in that area, and keep drawing samples from there
with a high probability. Clearly, the sampling process is rubber-banded by
the Markov chain, and this ensures that each sample will not be too far away
from the previous one. Therefore, we can conclude that the MCMC algorithm
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Fig. 5.11. Illustration of the MCMC sampling algorithm, where a Gaussian distri-

bution is used as the candidate-generating function
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improves the sampling efficiency, and this efficiency improvement, however, is
accomplished at the cost of losing the sample independence.

Problems

5.1. Consider a Markov chain with the state space E = {1, 2, 3} and the
following transition matrix:

P =

⎡

⎢⎣
0.2 0.5 0.3
0.1 0.1 0.8
0.5 0.2 0.3

⎤

⎥⎦ (5.61)

(a) What is the stationary distribution of the Markov chain?
(b) Is this chain reversible?

5.2. Let T be the return time to state 1 for the Markov chain in problem 5.1.
Calculate E1[T ]

5.3. In a Roulette gambling game, assume that each bet of one dollar has a
probability of p = 18/38 to win one dollar and 1 − p to lose one dollar. A
gambler decides to continue gambling until he either wins 5 dollars or loses
100 dollars. What is the probability that he wins 5 dollars eventually? What
is the expectation of his profit (or loss)?

5.4. A drunkard walks on a straight road starting from origin. When he is at
origin, there are equal chances that he steps east or west. When he is away
from origin, there is a probability p > 0.5 that he steps towards origin, and
probability 1−p away from origin. Assume the size of each step is fixed. What
is the transition matrix of this process. Is it reducible or not? Is it periodic?

5.5. For the same drunkard in Problem 5.4, after long enough time, what is
the probability of seeing the drunkard at origin?

5.6. Let P be the transition matrix of a heterogeneous Markov chain, x1, · · ·xt

be a sample state sequence. We can use the following Monte Carlo average to
estimate the stationary distribution π

π̂i =
1
T

T∑

t=1

δ(xt, i)

Is this an unbiased estimator of πi? What is the variance of π̂i?
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5.7. Random samples from exponential and normal distribution. Let X1 and
X2 be random samples from uniform distribution [0, 1).

(a) Prove that the random variable Y = − log X1 is an exponential distri-
bution.

(b) Let Y1 =
√
−2 log X1 cos 2πX2, Y2 =

√
−2 log X1 sin 2πX2. Prove that

Y1 and Y2 are independent Normal random variables.

5.8. Suppose that we use rejection sampling to get samples from a
Gaussian distribution with zero mean and unit variance. We choose Q(x) =
a
2 exp(−a|x|) as the instrumental distribution. Find the optimal a that makes
the sampling most efficient.

5.9. Importance sampling. One way to calculate the integration I =∫
x∈A

f(x)dx1 · · · dxk is to use the Monte Carlo method. Let p(x) be a dis-
tribution over A. We can draw n independent samples x1 · · ·xn from p(x).
Then the Monte Carlo estimation of I is

Î =
1
N

N∑

n=1

f(xi)
p(xi)

(5.62)

(a) Show that the expectation of Î is I.
(b) What is the variance of Î. What kind of p(x) can minimize the vari-

ance?
(c) What is the advantages/disadvantages of using the Monte Carlo inte-

gration compared to the numerical integration?

5.10. Prove the correctness of the Metropolis algorithm, i.e., the stationary
distribution of the constructed Markov chain is the target distribution.

5.11. Suppose the we use the Metropolis algorithm to sample a simple distrib-
ution P (x) = 1/N x ∈ 1, · · · , N . Suppose that we use the following candidate-
generating distribution:

P (x′|x) =

{
1/3 if |x′ − x| ≤ 1
0 otherwise

(5.63)

(a) For N = 10, generate and plot two sample sequences from a chain of
1000 iterations.

(b) For N = 100, generate and plot two sample sequences from a chain of
1000 iterations.
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5.12. Prove that for an irreducible Markov Chain, all its states possess the
same nature: transient, positive recurrent, or null recurrent.

5.13. Prove that an irreducible homogeneous Markov chain is positive cur-
rent if and only if there exists a stationary distribution. When the stationary
distribution exists, it is unique and positive (Theorem 5.6).

5.14. Google’s Page Ranking Algorithm. Consider a graph G = (V,E) with
a vertex set V and an edge set E, where each vertex v ∈ V represents a web
page, and an edge (u, v) ∈ E represents a link (or links) between two web pages
u and v. Define an N × N square matrix A in which each element auv is the
weight of the edge (u, v). If there are Nu > 0 links that originate from the web
page u, then auv = 1/Nu, otherwise, auv = 0. Let r1 = [r11, r12, . . . , r1N ] be
the largest eigenvector of A. The page ranking algorithm uses r1i as the page
ranking for the i’th web page. Explain the physical meaning of each element
r1i of the eigenvector r1. (Hint: consider the problem from the stationary
distribution viewpoint.)
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Markov Random Fields and Gibbs Sampling

Markov chain theories aim to model sequences of random variables that have
certain dependencies among themselves. In this chapter, we present Markov
random field theories that extend Markov chains to enable the modeling of lo-
cal structures/interactions among random variables. Because markov random
fields can naturally model signals with both spatial and temporal configura-
tions, they have been widely applied in areas of image processing, computer
vision, multimedia computing, etc.

We start this chapter by introducing important concepts and definitions
of Markov random fields, followed by describing Gibbs distributions and their
equivalence to Markov random fields. We also describe the Gibbs sampling
method that is a special version of the Markov chain Monte Carlo method
described in the previous chapter. At the end of this chapter, we provide a
case study that describes our original work to apply Markov random fields to
the video foreground object segmentation task.

6.1 Markov Random Fields

Let S be a finite set representing sites, Λ be another finite set representing
values of random variables. A random field on S with phases in Λ is a collection
of random variables X = {X(s)}s∈S with values in Λ. By convention, the
finite sets S and Λ are called the site space and phase space, respectively.
Furthermore, we can introduce a space ΛS called the configuration space, and
regard the entire random field as a single random variable taking its values in
ΛS . A configuration x ∈ ΛS is a vector, and is denoted as x = [x(s), s ∈ S],
where x(s) ∈ Λ (recall that in this book, we use bold letters to represent
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vectors, and regular letters to represent scala values). For a given configuration
x and a given subset A ⊂ S, we define the partial configuration x(A) as:

x(A) = [x(s), s ∈ A] .

If we use S − A to represent the complement of A in S, then,

x = [x(A), x(S − A)] .

In particular, for any fixed site s ∈ S,

x = [x(s), x(S − s)] .

Markov random fields (MRF) are a natural extension of markov chains,
which aim to model local structures/interactions among random variables.
The local structures/interactions are usually defined in terms of an undirected
graph G = (S,E) (see Sect. 4.2 for detailed descriptions), where S and E are
the site space and the edge set of the random field G, respectively. In general,
a neighborhood system N is defined on the site space S, which is a set of
neighborhoods N = {Ns}s∈S such that for all s ∈ S,

s /∈ Ns, t ∈ Ns ⇒ s ∈ Nt .

The subset Ns is called the neighborhood of site s.
With the above preparations, the definition of Markov Random fields is

given as follows. The random field X = {X(s)}s∈S is a Markov random field
with respect to the neighborhood system N if for all sites s ∈ S,

P (X(s) = x(s) |X(S − s) = x(S − s)) = P (X(s) = x(s) |X(Ns) = x(Ns)) ,

(6.1)
where x ∈ ΛS . Define the local characteristic of the MRF at site s as:

P (s)(x) = P (X(s) = x(s) |X(Ns) = x(Ns)) . (6.2)

The family {P (s)}s∈S is called the local specification of the MRF.
In summary, a Markov random field is characterized by the following ele-

ments:

1. The site space S.
2. The phase space Λ.
3. The neighborhood system N = {Ns}s∈S defined on S.
4. The local specification {P (s)}s∈S .
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Note that any random field will become an MRF if we define a trivial neigh-
borhood system such that the neighborhood of any site s is the whole site
space S. However, as will be demonstrated in subsequent sections, interesting
Markov random fields are those with relatively small neighborhoods in terms
of the models’ values and applicabilities.

6.2 Gibbs Distributions

Gibbs distributions were originally introduced by Gibbs in 1902 to model
physical interactions between molecules and particles. For this purpose, the
notion of cliques and potentials were developed to embody local configurations
and interactions among elements. Given a site space S and a phase space Λ,
a Gibbs distribution is described by the following components:

• Clique: Any singleton {s} is a clique. A subset C ∈ S with more than one
element is a clique if any two distinct sites in C are neighbors. In other
words, the subgraph induced by a clique is a complete graph. The set of
all cliques is denoted by C.

• Potential: A Gibbs potential on ΛS is a collection {VC}C∈ C of functions
VC : ΛS → R such that
(1) VC(x) ≡ 0 if C is not a clique.
(2) For all x,x

′ ∈ ΛS and all C ∈ C,

x(C) = x
′
(C) ⇒ VC(x) = VC(x

′
) . (6.3)

Note that function VC(x) depends only on the phases at the sites in-
cluded in the clique C. Therefore, VC(x(C)) is a more accurate ex-
pression of VC(x), but we do not use the former notation for typing
convenience.

• Energy function: The energy function U : ΛS → R is defined from the
potential {VC}C∈ C as follows:

U(x) =
∑

C∈ C
VC(x) . (6.4)

Using the above definitions, a Gibbs distribution relative to {S,C} is de-
fined as follows:

πT (x) =
1

ZT
e−

1
T U(x) (6.5)

where T > 0 is a constant called temperature, and ZT is the normalizing con-
stant called the partition function. A Gibbs distribution πT (x) is a probability



118 6 Markov Random Fields and Gibbs Sampling

measurement on the configuration space ΛS that takes values in the range of
[0, 1]. It gives a higher probability to a configuration x ∈ ΛS with a lower
energy U(x), and vice versa, which is the reflection of physical laws.

neighborhood cliques

(a) 4-neighbor system and its cliques

neighborhood cliques

(b) 8-neighbor system and its cliques

Fig. 6.1. Two neighborhood systems and their cliques

Figure (6.1) shows two most common neighborhood systems and their
corresponding cliques. In the figure, the black dots are the neighbors of the
central white dots, and each clique is up to a rotation. Neighborhoods and
cliques are defined to capture local interactions among elements in the target
system, and a Gibbs potential defined on each clique is used to quantitatively
measure the local interaction expressed by the clique.

The following example demonstrates how Gibbs potential and energy func-
tion are defined to model a real problem.

Example 6.1. Ising Model
This model was invented by E. Ising in 1925 to help explain ferromagnetic
materials. Here, S = Z2

m (an m × m integer lattice), Λ = {+1, −1}, and the
4-neighborhood system with the corresponding cliques (see Fig. (6.1)(a)) were
used for model construction. The Gibbs potential was defined as
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V{s}(x) = −H

k
x(s) , (6.6)

V{s,t}(x) = −J

k
x(t)x(s) , (6.7)

where {s}, {s, t} are the singleton and the 2-element cliques, respectively, k is
the Boltzmann constant, H is the external magnetic field, and J is the internal
energy of an element magnetic dipole. The energy function corresponding to
this potential is

U(x) = −H

k

∑

s∈S

x(s) − J

k

∑

{s,t}
x(s)x(t) (6.8)

where the sums extend over the entire site space S for which the indicated
cliques make sense.

It is noteworthy that obtaining explicit formulas for Gibbs distributions
is one of the biggest challenges in applying Gibbs models because the parti-
tion function ZT is generally impossible to compute, due to the fact that ZT

needs to sum over all possible configurations x ∈ ΛS , and the configuration
space ΛS is generally huge for many real problems. However, there are a few
exceptions where scientists succeeded in deriving explicit forms of Gibbs dis-
tributions, and these successes are mostly made with relatively simple models.
The following example provides the simplest one which was solved by Ising in
1925.

Example 6.2. Ising’s Toric Model [31]
This model is mostly same as the one in Example 6.1. except that the site
space S = {1, 2, . . . , N} consists of N points arranged on a circle in this order.
The neighbors of site i are i+1 and i−1, with the convention that site N +1 is
site 1, and sites N and 1 are neighbors. A configuration x ∈ ΛS is denoted as
x = [x1, x2, . . . , xN ]. Set a = J

kT , and b = H
kT , the Gibbs distribution becomes

πT (x) =
1

ZT
ea

∑N
i=1 xixi+1+b

∑N
i=1 xi ,

where the partition function is

ZN =
∑

x∈ΛS

ea
∑N

i=1 xixi+1+b
∑N

i=1 xi .

Define the quantity
R(u, v) = eauv+ 1

2 b(u+v) ,
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the partition function can be rewritten as,

ZN =
∑

x∈ΛS

R(x1, x2)R(x2, x3) · · ·R(XN , x1) . (6.9)

Defining the transition matrix

P =
(

R(+1,+1) R(+1,−1)
R(−1,+1) R(−1,−1)

)
=

(
ea+b e−a

e−a ea−b

)
,

we can rewrite (6.9) as follows

ZN =
∑

x1∈Λ

∑

x1,...,xN∈Λ

R(x1, x2)R(x2, x3) · · ·R(xn, x1) =
∑

x1∈Λ

PN (x1, x1) ,

where PN is the N -step transition matrix, and PN (x1, x1) is the (x1, x1)’th
element of the matrix. Obviously, ZN is the trace of PN . In particular, if we
denote by λ+ and λ− the eigenvalues of P, then

ZN = λN
+ + λN

− .

With the above equality, we obtain the explicit formula of the Gibbs distrib-
ution as follows

πT (x) =
1

λN
+ + λN

−
ea

∑N
i=1 xixi+1+b

∑N
i=1 xi .

6.3 Gibbs – Markov Equivalence

Although Gibbs distributions and Markov random fields were developed in
different contexts, they have been proven to be equivalent. This equivalence
is more accurately stated by the following theorem.

Theorem 6.1 (Gibbs – Markov Equivalence). A Gibbs distribution
πT (x) of the following form

πT (x) =
1

ZT
e−

1
T U(x) ,

with the energy U(x) derived from a Gibbs potential {VC}C∈C relative to the
neighborhood system N is Markovian relatively to the same neighborhood sys-
tem. Moreover, its local specification is given by the formula

P (s)(x) =
e−

∑
C←s VC(x)

∑
λ∈Λ e−

∑
C←s VC(λ, x(S−s))

, (6.10)

where the notion
∑

C←s means the summation over all the cliques that contain
the site s.
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Proof: The strategy here is to prove (6.10) satisfies the Markov property
(6.1). More precisely, we need to first prove that the right-hand side of (6.10)
equals P (X(s) = x(s) | X(S − s) = x(S − s)), and then prove that this
quantity further equals P (X(s) = x(s) | X(Ns) = x(Ns)).

By definition of conditional property,

P (X(s) = x(s) |X(S − s)=x(S − s)) =
P (X(s) = x(s),X(S − s)=x(S − s))

P (X(S − s)=x(S − s))

=
P (X = x)∑

λ∈Λ P (λ,X(S − s) = x(S − s))

=
π(x)∑

λ∈Λ π(λ,x(S − s))
(6.11)

where the first and second steps in the above derivations are based on the
Bayes’s rules. Since

π(x) =
1
Z

exp

⎧
⎨

⎩−
∑

C←s

VC(x) −
∑

C 
←s

VC(x)

⎫
⎬

⎭ , (6.12)

π(λ,x(S − s)) =
1
Z

exp

⎧
⎨

⎩−
∑

C←s

VC(λ,x(S − s)) −
∑

C 
←s

VC(λ,x(S − s))

⎫
⎬

⎭ ,

(6.13)

we can rewrite (6.11) as follows

P (X(s) = x(s) | X(S − s) = x(S − s))

=
1
Z exp{−

∑
C←s VC(x)} exp{−

∑
C 
←s VC(x)}

1
Z

∑
λ∈Λ

{
exp{−

∑
C←s VC(λ,x(S − s))} exp{−

∑
C 
←s VC(λ,x(S − s))}

}

=
exp{−

∑
C←s VC(x)} exp{−

∑
C 
←s VC(x)}

exp{−
∑

C 
←s VC(x)}
∑

λ∈Λ exp{−
∑

C←s VC(λ,x(S − s))}

=
e−

∑
C←s VC(x)

∑
λ∈Λ e−

∑
C←s VC(λ, x(S−s))

(6.14)

In the above derivations, the second equality is based on the fact that if C

is a clique and s is not in C, then VC(λ,x(S − s)) = VC(x) and therefore is
independent of λ ∈ Λ.

Note that the right-hand side of (6.14) is the same as the right-hand side
of (6.10), and it depends on x only through x(s) and the cliques containing
s. Therefore,
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P (s)(x) = P (X(s) = x(s) | X(S − s) = x(S − s))

= P (X(s) = x(s) | X(Ns) = x(Ns)) . (6.15)

Since the Gibbs distribution satisfies the above Markov property, it is Markov-
ian. (proof-end).

Theorem (6.1) shows that a Gibbs distribution is Markovian. The following
theorem further reveals that the converse part is also true. Therefore, the
two theorems together conclude that Gibbs distributions and Markov random
fields are essentially the same objects, with a provision stated below.

Theorem 6.2. Let π(x) be the probability distribution of a Markov random
field with respect to a state space S and a neighborhood system N that satisfies
the positivity condition. Then, π(x) can be defined as

π(x) =
1
Z

e−U(x)

where U(x) is an energy function derived from a Gibbs potential {VC}C∈C

associated with the same state space S and neighborhood system N .

The proof of the theorem is based on the Mobius formula, and can be found
in [37].

Given a Gibbs distribution, the local energy at site s of configuration x is
defined as

Us(x) =
∑

C←s

VC(x) . (6.16)

With this notation, (6.10) becomes

P (s)(x) =
e−Us(x)

∑
λ∈Λ e−Us(λ,x(S−s))

. (6.17)

Example 6.3. Local Specification of Ising Model
Using (6.10), the local specification of the Ising model becomes

P (s)(x) =
e

1
kT {J

∑
t:|t−s|=1 x(t)+H}x(s)

e+ 1
kT {J

∑
t:|t−s|=1 x(t)+H} + e−

1
kT {J

∑
t:|t−s|=1 x(t)+H} . (6.18)

The local energy at s is

Us(x) =
1
k

⎧
⎨

⎩J
∑

t:|t−s|=1

x(t) + H

⎫
⎬

⎭x(s) . (6.19)
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6.4 Gibbs Sampling

As described in Sect. 6.2, one can seldom obtain the explicit formula for
a Gibbs distribution because the configuration space ΛS is often too large
to compute the partition function ZT . Therefore, for many real problems,
conducting sampling and simulations of target Gibbs distributions is the only
way to obtain solutions. In this section, we present the Gibbs sampling method
that is a special version of the Markov chain Monte Carlo simulation.

Consider a random field on S with phases in Λ, and with a probability
distribution

π(x) =
1
Z

e−U(x) . (6.20)

If we can make π(x) as the stationary distribution of an irreducible aperiodic
Markov chain, then its distribution at a large time n will be close to π(x),
and therefore, by analogy to the Markov chain Monte Carlo method, we will
obtain a simulation of π(x).

To realize the vision discussed above, we introduce a stochastic process
{Xn}n≥0, where

Xn = [Xn(s) , s ∈ S] , Xn(s) ∈ Λ .

The state at time n of this process is a random field on S with phases in Λ,
or equivalently, a random variable with values in the state space ΛS . For sim-
plicity, we assume that state space is finite. The stochastic process {Xn}n≥0

is called a dynamic random field .
Now the problem becomes how to identify a transition matrix for the

above chain to make π(x) its stationary distribution. The Gibbs sampler uses
a strictly positive probability distribution qs, s ∈ S, and the transition from
Xn = x to Xn+1 = y is made according to the following rule.

The new state y is obtained from the old state x by changing (or not)
the phase at one site only. The site s to be changed at time n is selected
independently of the past with probability qs. When site s is selected, the new
configuration y is constructed from the current configuration x as follows:

y = [y(s), y(S − s) = x(S − s)] ,

where y(s) is generated with probability π(y(s) | x(S − s)). This operation
produces the non-zero entries of the transition matrix as follows

P (Xn+1 = y | Xn = x) = qs π(y(s) | x(S − s)) ,

subject to y(S − s) = x(S − s) . (6.21)
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The corresponding chain is irreducible and aperiodic. To prove that π(x) is the
stationary distribution of the chain, we use the detailed balance test, which
corresponds to proving the following equality

π(x)P (Xn+1 = y | Xn = x) = π(y)P (Xn+1 = x | Xn = y) ,

for all x,y ∈ ΛS .

Proof: Putting (6.21) into the left-hand side of the above equation,

π(x)P (Xn+1 = y | Xn = x) = π(x)qs π(y(s) | x(S − s))

= π(x)qs
π(y(s) | x(S − s))P (x(S − s))

P (x(S − s))

= π(x)qs
π(y(s), x(S − s))

P (x(S − s))

= π(y(s), x(S − s))qs
π(x)

P (x(S − s))

= π(y(s),y(S − s))qs
π(x(s),x(S − s))

P (x(S − s))

= π(y)qs
π(x(s) | x(S − s))P (x(S − s))

P (x(S − s))
= π(y)qsπ(x(s) | x(S − s))

= π(y)qsπ(x(s) | y(S − S))

= π(y)P (Xn+1 = x | Xn = y)

In the above derivations, equality 3 and 6 are based on the Bayes’s rules, and
the last equality is based on (6.21). Also, the condition y(S − s) = x(S − s)
was used repeatedly throughout the derivations. (proof-end).

In the above descriptions, a probability qs, s ∈ S was used to choose
the site s whose phase is to be changed. In practice, the sites to be updated
are not chosen at random, but instead are visited in a well-determined order
s(1), s(2), . . . , s(N) periodically, where N is the total number of sites s ∈ S,
and {s(i)}1≤i≤N is an enumeration of all the sites of S, called a scanning
policy. For image processing tasks, the most common scanning policy is the
one that scans pixels of the input image line by line from the upper-left to the
bottom-right corner of the image.

Let Xk be the image before the k’th update. At time k, site s = k mod N is
updated to produce the new image Xk+1. If Xn = x, then Xn+1 = [y(s),x(S−
s)] with probability π(y(s) | x(S − s)). Obviously, this update scheme uses
the probability qs defined as follows
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qs(k) =

{
1, if s = k mod N ,

0, othersise .
(6.22)

where qs(k) is the probability qs at time k. It can be proven that the Gibbs
distribution π(x) is the stationary distribution for the irreducible aperiodic
Markov chain {Xk}k≥0 generated above (see Problem 6.7 at the end of the
Chapter).

From the above descriptions, one can clearly observe the analogy between
Gibbs sampling and the Markov chain Montel Carlo simulation. Indeed, both
the algorithms strive to construct an irreducible aperiodic Markov chain, and
to make the chain’s stationary distribution π equal to the target distribution.
In this sense, we say that Gibbs sampling is a special version of the MCMC
simulation.

From the implementation’s point of view, Gibbs sampling uses the local
specification P (s) of the Markov random field to construct the transition ma-
trix P, whereas MCMC needs to first construct a candidate-generating matrix
Q, and then makes some twist on it to obtain P. As discussed in Sect. 5.6, to
make a fast-converging MCMC, one needs to design a candidate-generating
matrix Q that is close enough to the target transition matrix P, which is a
challenging task, especially when one has a limited knowledge about the tar-
get distribution. Therefore, for the problems where their local specifications
can be defined, Gibbs sampling is a more convenient way to sample/simulate
their distributions.

Clearly, Gibbs sampling applies to any multivariate probability distribu-
tion

P (x(1), . . . , x(N))

on a set N with the phase space Λ. In the literature, there are many research
studies that apply Gibbs sampling, and more generally, Monte Carlo Markov
chain simulation, outside physics, especially in the areas of image processing,
statistics, and bio informatics.

The basic step of Gibbs sampling for a multivariate distribution
P (x(1), . . . , x(N)) consists of selecting a coordinate number i ∈ [1, N ] at ran-
dom, and choosing the new value y(i) of the corresponding coordinate, with
probability

P (y(i) | x(1), . . . , x(i − 1), x(i + 1), . . . , x(N)) .

It is easy to verify that P is the stationary distribution of the corresponding
chain (see Problem 6.8 at the end of the chapter).
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In summary, given the state space S, phase space Λ, and the local spec-
ification π(x(s) |x(S − s)), Gibbs sampling generates a sequence of random
samples {xn}n≥0 that follow the Gibbs distribution π(x) with the following
steps:

1. Set the initial configuration x = 0, and n = 0. Let N1 be the number of
iterations for the operation.

2. Select a site s ∈ S either with probability qs, or according to some prede-
fined scanning policy.

3. Change the phase at site s to y(s) ∈ Λ with probability π(y(s) | x(S−s)).
4. Construct the new configuration

y = [y(s), y(S − s) = x(S − s)] ,

and output y.
5. Set x = y, n = n + 1. If n < N1, go to Step 2; otherwise, terminate the

sampling process.

6.5 Simulated Annealing

Simulated annealing is a generic optimization algorithm that aims to locate
a good approximation to the global optimum of a given function in a large
search space. It was independently invented by Kirkpatrick, et al. in 1983 [38]
and by Cerny in 1985 [39].

The method originates from the inspiration of annealing in metallurgy, a
technique involving heating and controlled cooling of a metal to increase the
size of its crystals and to reduce its defects.

In order to apply the simulated annealing method to a specific problem,
one must specify the following model components:

• State space S, which consists of each point s of the entire search space.
• Neighborhood, which is defined for each state s ∈ S as a subset N(s) of

S. N(s) essentially defines the set of adjacent states that are the candidates
for the annealing process to visit next.

• Transition probability Pij(T ), which defines the probability of transit-
ing from the current state i to a candidate new state j. Pij(T ) is generally
a function of the energies of the two states i and j, and of a global time-
varying parameter T called the temperature: Pij(T ) = P (U(i), U(j), T ).
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• Annealing schedule, which defines the schedule to gradually reduce the
temperature as the simulation proceeds. Initially, T is set to a high (or
infinity) value; it is decreased at each step according to the annealing
schedule, and must end with T = 0 towards the end of the simulation
process.

Let U : S → R be the function to be minimized. Using the simulated
annealing method, the solution seeking process is conducted iteratively as
follows: Suppose that at a given stage, a state i ∈ S is examined. At the next
stage, some neighbor state j ∈ N(i) is chosen according to a rule specific to
each algorithm, and the transition probability Pij(T ) = P (U(i), U(j), T ) is
computed. State j is accepted with probability Pij(T ); otherwise, the next
state is the same state i.

During the above iterative solution seeking process, the temperature T

is gradually reduced to zero according to the annealing schedule to control
the transition probability. At time n, T = Tn, and the transition probability
Pij(T ) = P (U(i), U(j), Tn).

One essential requirement for the transition probability Pij(T ) is that it
must be strictly positive for all i, j ∈ S, and all T . This means that the solution
seeking process may move to a new state even when it is worse (has a higher
energy) than the current one. It is this feature that prevents the method from
becoming stuck in a local minimum.

On the other hand, when T goes to zero, the probability Pij(T ) =
P (U(i), U(j), T ) must tend to zero if U(j) > U(i), and to a positive value
if U(j) < U(i). With this scheme, for sufficiently small values of T , the algo-
rithm will increasingly favor moves that go ”downhill”, and avoid those that
go ”uphill”. In particular, when T becomes 0, the procedure will reduce to
the greedy algorithm which makes the move if and only if it goes downhill.

The transition probability function P (U(i), U(j), T ) is usually chosen so
that the probability of accepting a move decreases when the difference U(j)−
U(i) increases. That is, small uphill moves are more likely than large ones.

Using the transition probability with the above properties, the transition of
state i to state j depends crucially on the temperature T . Roughly speaking,
the state evolution is sensitive only to coarser energy variations when T is
large, and to finer variations when T is small.

We use the following example to showcase a popular transition probability
function for the simulated annealing method.
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Example 6.4.
Assume that the current solution (state) at stage n is i ∈ S. At stage n + 1, a
tentative solution j ∈ N(i) is selected according to some rules. This solution
is accepted with probability

Pij(T ) = e−
(U(j)−U(i))+

T , (6.23)

where

(x)+ =

{
x if x ≥ 0,

0 otherwise.

One can verify that the transition probability (6.23) carries all the necessary
properties discussed above. First of all, it is strictly positive for all i, j ∈ S.
Second, when the difference U(j)−U(i) increases, Pij(T ) decreases, meaning
that it favors small uphill moves than large ones. Third, when T is large,
Pij(T ) is sensitive only to large changes in the difference U(j)−U(i), whereas
when T goes to zero, slight variations in U(j)−U(i) can cause large changes
in Pij(T ).

In the following derivations, we reveal what is the stationary distribution
of the annealing process, and how the stationary distribution changes when
T approaches to zero.

The simulated annealing process using the transition probability (6.23)
has the following stationary distribution π(T ) = [πi(T )]

πi(T ) =
e−

U(i)
T

∑
k∈S e−

U(k)
T

. (6.24)

To verify this, we compute for all i ∈ S

∑

i∈S

πi(T )Pij(T ) =
∑

i∈S e−
U(i)

T · e− (U(j)−U(i))+

T

∑
k∈S e−

U(k)
T

=
e−

U(j)
T

∑
k∈S e−

U(k)
T

= πj(T ) .

This proves that πT (T )P(T ) = πT (T ), which shows that π(T ) is the station-
ary distribution for P(T ) (the stationary distribution definition (5.28)).

Note that if we replace U(i) in (6.24) with log U(i), the stationary distri-
bution π(T ) of the simulated annealing process becomes



6.5 Simulated Annealing 129

πi(T ) =
exp(−log U(i)

1
T )

∑
k∈S exp(−log U(k)

1
T )

=
U(i)

1
T

∑
k∈S U(k)

1
T

, (6.25)

which exactly equals the distribution we seek for. Therefore, in real implemen-
tations, it is more convenient to use log U(i) in (6.23) instead of its original
form.

Define the set of global minima

M = {i ∈ S | U(i) ≤ U(j), ∀j ∈ S} ,

and let m be the minimum value of the function U(i): m = mini∈S U(i). By
dividing both the numerator and denominator of (6.24) with e

m
T , we have

πi(T ) =
e−

U(i)−m
T

∑
k∈S e−

U(k)−m
T

=
e−

U(i)−m
T

∑
k∈M e−

U(k)−m
T +

∑
k 
∈M e−

U(k)−m
T

=
e−

U(i)−m
T

|M| +
∑

k 
∈M e−
U(k)−m

T

, (6.26)

where the third equality in the above derivations uses the fact U(k) = m

if k ∈ M. In (6.26), when T approaches zero, e−
U(k)−m

T tends to zero if
U(k) > m, and to one if U(k) = m. Therefore, at the limit T → 0, πi(T )
becomes

lim
T→0

πi(T ) =

{
1

|M| if i ∈ M ,

0 if i �∈ M .
(6.27)

At the beginning of this section, it is stated that one needs to specify
the annealing schedule to set the temperature T to a high value (or infinity)
at the start, and gradually reduces the temperature as the simulation pro-
ceeds. The purpose of this scheme is to make the solution seeking process to
initially wander among a broad region of the search space that may contain
good solutions, then drift towards low-energy regions that become narrower
and narrower, and finally move downhill according to the steepest descent
heuristic.

The result in (6.27) suggests the following annealing schedule: Start the
annealing process with T = a0, and wait a sufficiently long time for the process
to get close to its stationary regime. Then set T = a1 < a0, and again wait for
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the steady state. Repeat this procedure till T approaches zero. At the stage
T → 0, one can expect that the state i generated by the annealing process
will be in M, the set of global minima, with very high probability.

We use the following example to demonstrate how simulated annealing can
be combined with MCMC simulation, and to visualize the effect of tempera-
ture reduction on the simulated annealing process.

Example 6.5.
This example is the continuation of Example 5.5 in Chap. 5. Same as in
Example 5.5, the target density function P (X) to be simulated is defined by
(5.58), and a Gaussian distribution with unit variance is used as the candidate-
generating function (the transition probability Pij)1. Here, we define P (X)(T )
as

P (X)(T ) = P (X)
1
T . (6.28)

The entire simulation process is the same as described in Example 5.5 except
for that the temperature T is set to a large value at the beginning, and is
gradually reduced according to a predefined annealing schedule.

Figure 6.2 (a) and (b) show the trajectories of state transitions in the 2-D
space X = (X1,X2) generated by the MCMC simulation at the temperatures
T = 10, and T = 1, respectively. The dotted lines in the figures depict the
contour map of the target density function. The swimming-pool shaped con-
tours centered at (5, 3) correspond to the tall heap, while the ellipse shaped
contours centered at (0, 0) correspond to the short heap of the target density
function (see Fig. 5.9). It can be clearly observed from the contour map that
the tall heap resides at energy levels higher than the short heap. It is also
obvious that, when temperature T is high, the simulation process wanders
among a broad region of the search space, and visits both heaps of the target
function. When temperature is low, the state transition trajectory is confined
within a narrow, low-energy region that corresponds to the short heap, and
the tall heap is no longer visited by the simulation process. Therefore, sam-
pling at high temperatures is the key to the success of sampling the tall heap
of the target density function.

Another important aspect of the simulated annealing method is the de-
finition of the neighborhood structure. The neighborhood N(s) of a state s

1 Note that in this example we used the fixed transition probability Pij that is

independent of the temperature T .
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(a) State transition trajectories at temperature T = 10
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(b) State transition trajectories at temperature T = 1

Fig. 6.2. Effect of temperature changes on the simulated annealing process
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must consists of the adjacent states that are ”good enough” for the anneal-
ing process to visit next. The neighborhood definition is particularly critical
because it can have a significant impact on the effectiveness of the annealing
method. In practice, a rule of thumb is to select such a neighborhood system
that neighbors of s are expected to have about the same energy as s.

We use the following example to describe the neighborhood definition for
the traveling salesman problem.

Example 6.6. The Traveling Salesman Problem
This problem aims to find the shortest route for a salesman who wants to
visit each of K cities exactly once. We define the state space S as the set
of K! admissible routes, U(i) as the length of route i. One popular choice
for the neighborhood N(i) of route i is the set of all routes j obtained by
interchanging a pair of adjacent cities in i.

Let (α, α + 1), and (β − 1, β) be two pairs of adjacent cities in route i (see
Fig. 6.3). The interchange involving cities α and β is conducted by cutting the
segments (α, α + 1) and (β − 1, β), and replacing them by the new segments
(α, β − 1) and (α + 1, β).

1 K

α

α+1

β

β-1

1 K

α

α+1

β

β-1

Fig. 6.3. Two neighbor routes of the traveling salesman problem
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In such a construction of salesman’s routes, there are exactly K(K−1)+1
neighbors of a give route. The size of the neighborhood is therefore reasonable
in comparison to the size of the entire search space. Note also that the com-
putation of U(j) from the result of U(i) involves only four intercity distances
when j ∈ N(i).

In summary, given the function U(i) to be minimized, the simulated an-
nealing method strives to find the global minimum of U(i) with the following
main operations:

1. Define the state space S, the neighborhood N(s) for each state s ∈ S, the
probability function Pij(T ) = P (U(i), U(j), T ) for i, j ∈ S, and the an-
nealing schedule. Let N1 be the number of iterations for each temperature
T , and N2 be the number of stages for the annealing schedule.

2. Set the initial state i = i0, n = 0, k = 0, and Tk = ∞.
3. Select the next candidate state j ∈ N(i) according to some predefined

rules, and compute the transition probability Pij(Tk).
4. Accept state j with probability Pij(Tk); otherwise, the next state is the

same state i.
5. Set i = j, n = n + 1. If n < N1, go to Step 3; otherwise, go to Step 6.
6. Set k = k + 1. If k < N2, reduce Tk according to the annealing sched-

ule, and go to Step 3; otherwise, return state i as the final solution, and
terminate the annealing process.

6.6 Case Study: Video Foreground Object Segmentation

by MRF

In this case study, we present our original work that applies Markov random
field to the video foreground object segmentation task [40]. We first briefly
describe the objective of this work, and provide an overview of the entire fore-
ground object segmentation process. Then we provide detailed explanations
on the Markov random field model and the Gibbs sampling algorithm that
are used to generate dense foreground/background layers from sparse ones. Fi-
nally, we present foreground object segmentation results using two real videos
that contain both rigid and non-rigid foreground objects.
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6.6.1 Objective

Segmentation of foreground objects from background has a lot of applications
in object tracking, video compression, human-computer interaction, multime-
dia content editing and manipulation. Now with the prevalence of broadband
Internet, multimedia-enabled personal computers and 3G cellphones, home
users can easily establish video connections with friends by which they can
see each other’s faces and objects of interest. Such developments have opened
up new opportunities for various value-added services and applications, and
we believe that the foreground object segmentation techniques have a great
potential as an enabling tool for accomplishing such tasks as bandwidth reduc-
tion, privacy protection, personalized video content editing and hallucination,
etc.

In this case study, we present a fully automatic foreground object segmen-
tation method that aims at applications for 3G cellphone and home broadband
Internet users. In particular, we are interested in such applications that the
user takes video images of his/her face or other objects of interest using a cell-
phone or a webcam, and wants to send the video clip to another person with
the background either eliminated or hallucinated. We assume that the video
clip can contain both rigid and non-rigid objects; there always exist motions
caused by either moving cameras or moving objects; and the video captur-
ing/transmission device has quite limited computation and storage resources.
Indeed, these assumptions account for most of the common usage conditions
for this type of applications.

6.6.2 Related Works

To date, most works related to the task of foreground object segmentation
can be categorized into the following three categories:

• Motion-based segmentation,
• Multi-cue object segmentation, and
• Alpha matting.

Motion-based segmentation approaches compute optical follows for each
pixel, and cluster pixels or color segments into regions of coherent motions.
Many approaches solve the problem through an Expectation-Maximization
(EM) process to estimate the parametric motion models and the supporting
regions [41, 42, 43, 44, 45]. There are also many research studies that group
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pixels or segments into layers based on the affinity of local measurements
[46, 47, 48, 49].

In many cases, motion or color clues alone are not sufficient to distinguish
objects because different objects may share similar colors or motions. There
have been research efforts that strive to combine spatial and temporal features
for improved segmentations [50, 51, 52]. Ke and Kanade [51] described a fac-
torization method to perform rigid layer segmentation in a subspace because
all the layers share the same camera motion. Wang and Ji [52] presented a dy-
namic conditional random field model to combine both intensity and motion
cues to achieve segmentations.

On the other hand, video matting is a classic inverse problem in computer
vision that involves the extraction of foreground objects and the alpha mattes
that describe the opacity of each pixel from image sequences [53, 54, 55, 56,
57, 58, 59]. Apostoloff and Fitzgibbon [56] presented their matting approach
for natural scenes assuming the camera was static and the background was
known. Wang and Cohen [53] described a unified segmentation and matting
approach based on Belief Propagation, which iteratively estimates the opacity
value for every pixel in the image using a small sample of foreground and
background pixels marked by the user. Li et al. [54] used a 3D graph cut-
based segmentation followed by a tracking-based local refinement to obtain a
binary segmentation of the video objects, and adopted coherent matting [60]
as a prior to produce the alpha matte of the objects.

The methods described above, as well as many others in the literature are
generally computationally expensive because (1) they conduct object segmen-
tations on pixel or color blob levels, and (2) they need to compute optical flows
for all pixels, which requires a huge amount of computations. Furthermore,
many alpha matting approaches are not fully automatic, and often require
users to provide the initialization or fine-tuning to the segmentation process.

6.6.3 Method Outline

As described in Sect. 6.6.1, our foreground object segmentation method aims
at applications for 3G cellphone and home broadband Internet users, and
therefore, it must be able to handle any type of objects, and must be very
efficient in computation and storage. We take the following approaches to
overcome these challenges.

First, we assume that the input video sequence is composed of two motion
layers: foreground and the background, and that the two motion layers follow
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affine transformations. Although such an assumption will limit our ability
to model complex scenes, it is sufficient to model the most common usage
patterns for cellphone and home Internet users.

Second, we strive to compute sparse motion layers first, using sparse image
features such as edge and corner points extracted from each video frame. This
approach will dramatically reduce the computational cost because compared
to dense motion layers, it involves much fewer pixels for the costly computa-
tion and clustering of optical flows. The joint spatio-temporal linear regression
method is developed to compute sparse motion layers of M consecutive frames
jointly under the temporal consistency constraint. This method aims to gener-
ate more reliable and temporally smoother motion layers for the entire input
video sequence.

Third, once the two sparse motion layers have been identified for edge and
corner points, we create the corresponding dense motion layers by using the
Markov Random Field (MRF) model. The MRF model assigns the rest of the
pixels to either of the motion layers by considering both the color attributes
and the spatial relations between each pixel and its surrounding edge/corner
points. By taking the above approaches together, we strive to accomplish the
task of foreground object segmentation with low computation cost and high
segmentation accuracy.

In the subsequent section, we will skip the descriptions of the sparse motion
layer computation algorithm, and will focus on the creation of dense motion
layers using an MRF model. Detailed descriptions of the entire method can
be found in [40].

6.6.4 Overview of Sparse Motion Layer Computation

We extract both corner and edge points from each video frame using the
Canny edge detector [61], and compute optical flows at the extracted fea-
ture points using the Lucas-Kanade method [62]. The set of extracted feature
points together with their optical flows form the input to the sparse motion
layer computation module.

Let (xi, yi) denote a pixel site, and (δxi, δyi) denote the optical flow value
at (xi, yi). An affine motion model is defined by the following equations:

δxi = axi + byi + c (6.29)

δyi = dxi + eyi + f (6.30)
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where a, b, c, d, e, f are the six parameters defining an Affine transformation.
The outcome of the sparse motion layer computation is the two Affine motion
models A1 = (a1, b1, c1, d1, e1, f1) and A2 = (a2, b2, c2, d2, e2, f2), and the two
sets of feature points F , B that minimize the following Residue Sum of Squares
(RSS) function:

RSS(A1,A2,F ,B) =

∑

(xi,yi)∈F

∥∥∥∥∥∥∥

[
δxi

δyi

]
−

[
a1 b1 c1

d1 e1 f1

]
·

⎡

⎢⎣
xi

yi

1

⎤

⎥⎦

∥∥∥∥∥∥∥

2

+

∑

(xj ,yj)∈B

∥∥∥∥∥∥∥

[
δxj

δyj

]
−

[
a2 b2 c2

d2 e2 f2

]
·

⎡

⎢⎣
xj

yj

1

⎤

⎥⎦

∥∥∥∥∥∥∥

2

(6.31)

Introducing xi =

[
xi

yi

]
, ∇xi =

[
δxi

δyi

]
, and Al =

[
al bl cl

dl el fl

]
, we can then

rewrite (6.31) in a compact form as follows

RSS(A1,A2,F ,B) =

∑

xi∈F

∥∥∥∥∥∇xi − A1 ·
[
xi

1

]∥∥∥∥∥

2

+
∑

xj∈B

∥∥∥∥∥∇xj − A2 ·
[
xj

1

]∥∥∥∥∥

2

(6.32)

In (6.32), ∇xi is the observed optical flow at pixel site xi, and Al ·
[
xi

1

]
is

the optical flow at the same pixel site estimated by the Affine motion model
Al. Minimizing this RSS function is equivalent to minimizing the difference
between the observed and the estimated optical flows for each xi. In [40],
we developed the joint spatio-temporal linear regression method to efficiently
compute sparse motion layers of M consecutive frames jointly under the tem-
poral consistency constraint. Here, we omit the description of the algorithm,
and only show the two results generated by the method.

Figure 6.4 show two examples of the sparse motion layer computation.
Figure 6.4(a) and (c) show sample frames from two video sequences: one is
composed of a static rigid foreground object (a calendar) and arbitrary cam-
era motions, while the other is composed of a moving non-rigid foreground
object (a human) and arbitrary camera motions. Figure 6.4(b) and (d) show
the sparse motion layers computed from the frames in (a) and (c), respec-
tively. In (c) and (d), each visible point is a feature point extracted from
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(a) Original image (b) Corresponding sparse motion layers

(c) Original image (d) Corresponding sparse motion layers

Fig. 6.4. Examples of sparse motion layer computation

the corresponding frame. Feature points with a high brightness belong to the
background motion layer, while feature points with a dark brightness belong
to the foreground motion layer. Obviously, the feature points have been appro-
priately segmented, and the foreground and background layers are correctly
separated for these two video frames.

6.6.5 Dense Motion Layer Computation Using MRF

For a video frame X = {xi}, the sparse motion layer computation
generates two Affine motion models A1 = (a1, b1, c1, d1, e1, f1), A2 =
(a2, b2, c2, d2, e2, f2), and a sparse motion layer label Y in which each ele-
ment yi can take one of the three values: 0, 1, 2, which indicate that pixel
i in X is a non-feature point, a foreground feature point, and a background
feature point, respectively. Given X, A = (A1,A2), and Y, our task here is to
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generate a dense motion layer label L to maximize the following a posteriori
probability

L̂ = arg max
L

P (L|X,Y,A) (6.33)

where elements li in L can be either 1 or 2 to indicate that pixel i belongs to
the foreground or the background layer, respectively. This type of probabilistic
inference is called the maximum a posterior (MAP) estimation method. Before
the start of the dense motion layer computation, L is initialized to L = Y. This
means that all non-feature points i will have their labels equal to zero: li = 0.
The task of the dense motion layer computation is to assign an appropriate
label li ∈ {1, 2} for all pixels i, including those feature points (labels li of
those feature points i could be different from their sparse motion layer labels
yi).

To use the Markov random field method to model the above a posterior
probability, we define a random field on a site space S, where site i ∈ S

corresponds to pixel i in X, with a phase space Λ = {1, 2}. On the site
space S, the 4-neighbor system and the corresponding two types of cliques
are adopted: singleton clique {i} that is composed of each single site i ∈ S,
and 2-element clique {i, j} that is composed of i ∈ S and one of the four
neighbors j ∈ N(i) (see Fig. 6.1(a)). The Gibbs potential is defined as follows

V{i}(L|X,Y,A) =

⎧
⎪⎨

⎪⎩

0, if li = 0 ,∥∥∥∥∥∇xi − Ali

[
xi

1

]∥∥∥∥∥

2

, otherwise,
(6.34)

V
(1)
{i,j}(L|X) = δ(li �= lj) exp

{
−‖c(i) − c(j)‖2/σ2

}
, (6.35)

V
(2)
{i,j}(L|X,Y) =

{
0, if yi = 0 || yj = 0,

δ(li �= lj)‖dij × di‖ · ‖dij × dj‖, otherwise,

(6.36)

where in (6.34), if li = 1, then Ali is the affine transformation corresponding
to the foreground, if li = 2, then Ali is the affine transformation corresponding
to the background; in (6.35), c(i) is the RGB color values at pixel i, σ is a
predefined parameter; in (6.36), dij is the unit vector connecting from point
i to point j, di is the unit norm vector at edge point i, and x× y is the cross
product between vectors x and y.

With the above potential functions, the corresponding energy function
becomes
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U(L|X,Y,A) = α
∑

i∈S

V{i}(L|X,Y,A)

+ β
∑

{i,j}
V

(1)
{i,j}(L|X)

+ γ
∑

{i,j}
V

(2)
{i,j}(L|X,Y) , (6.37)

where the sums extend over the entire site space S for which the indicated
cliques make sense, and α, β, γ are the predefined weight parameters. With
the above energy function, the a posterior probability is defined as

P (L|X,Y,A) ∝ 1
Z

exp
{
− 1

T
U(L|X,Y,A)

}
, (6.38)

where Z is the normalizing constant.
In the above potential function definitions, V{i}(·) computes for site i ∈ S

the difference between the observed optical flow and the optical flow estimated
by Affine motion model Ali ; V

(1)
{i,j}(·) takes a large value if the sites i and j have

similar colors c(i), c(j) but different labels li,lj ; and V
(2)
{i,j}(·) becomes large if

i and j reside on the same edge line but have different labels. Therefore, the
labeling L that maximizes the a posterior probability P (L|X,Y,A), which is
equivalent to minimize the energy function U(L|X,Y,A), is the one that

• minimizes the difference between the observed and the Affine estimated
optical flows at each site i ∈ S;

• assigns the same label to two sites whose color values are similar;
• assigns the same label to two sites that reside on the same edge line.

6.6.6 Bayesian Inference

Given an observed image X, we want to infer its label (or class) Y using the
MAP estimation method:

Ŷ = arg max
Y

P (Y|X) .

By Bayes’ rules, the a posterior probability P (Y|X) can be computed as
follows

P (Y|X) ∝ P (X|Y)P (Y) , (6.39)

where P (X|Y) is called the likelihood of X given Y, and P (Y) is called the a
prior probability of Y. The principle of Bayesian inference is that, instead of
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directly computing the a posterior probability, we compute the likelihood and
the a prior probability . The likelihood measures how well the observation X
fits the inference Y, while the a prior probability reflects the designer’s prior
knowledge on Y. The likelihood measure can be considered as a cost function
that aims to minimize the estimation error, while the a prior probability can
be considered as a penalty that forces the inference process to reflect the
designer’s belief.

For the dense motion layer computation described in Sect. 6.6.5, we mod-
eled the a posterior probability P (L |X,Y,A) using the energy function de-
fined in (6.37). Indeed, this energy function can be interpreted as a Bayesian
inference. The potential function V{i}(·) measures how well the labeling L
fits into the Affine motion models A, while V

(1)
{i,j}(·) and V

(2)
{i,j}(·) reflect the

designer’s prior knowledge on L. Therefore, we can regard V{i}(·) as the likeli-
hood measure, and V

(1)
{i,j}(·), V

(2)
{i,j}(·) as the a prior probability of L. Without

the a prior probability, the inference process will lead to a labeling that best
fits the Affine motion models A. In case that certain parts of the background
share the same motion with the foreground object, which is highly probable in
many video sequences, this inference may not be able to fully separate the fore-
ground object from the background. When we introduce a non-trivial a prior
model into the inference process, it forces a balance between the designer’s
prior knowledge in the appropriate labeling and the effort of minimizing the
model fitting errors. As described at the end of Sect. 6.6.5, V

(1)
{i,j}(·), V

(2)
{i,j}(·)

encourage the assignment of the same label to pixels with similar colors, and
to pixels residing on the same edge segment, respectively. It is these priors
that ensure a correct labeling when the Affine motion models alone are not
sufficient to separate the foreground object from the background.

6.6.7 Solution Computation by Gibbs Sampling

The dense motion layer computation strives to generate the labeling L that
maximizes the a posterior probability P (L |X,Y,A). However, as this prob-
ability is defined by (6.38), for which one can not obtain its explicit formula,
Gibbs sampling with simulated annealing is a practical means for finding an
approximated solution for this problem.

By Theorem 6.1, the local specification of (6.38) is defined as

P (i)(L|X,Y,A) =
e−Θ1(i,L,X,Y,A)

∑
li∈{1,2} e−Θ2(i,li,L,X,Y,A)

, (6.40)
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where

Θ1(i,L,X,Y,A) = α V{i}(L | X,Y,A)

+ β
∑

{i,j}:j∈N(i)

V
(1)
{i,j}(L | X)

+ γ
∑

{i,j}:j∈N(i)

V
(2)
{i,j}(L | X,Y) ,

and

Θ2(i, li,L,X,Y,A) = α V{i}(li,L(S − i) | X,Y,A)

+ β
∑

{i,j}:j∈N(i)

V
(1)
{i,j}(li,L(S − i) | X)

+ γ
∑

{i,j}:j∈N(i)

V
(2)
{i,j}(li,L(S − i) | X,Y) .

Note that L(S − i) in the above equalities denotes the labels at all sites s ∈ S

except for site i.
With the above local specification definition, the Gibbs sampling for the

dense motion layer computation is implemented as follows:

1. Set the initial configuration L = Y, Umin = ∞, Lmax = 0, and n = 0.
Let N1 be the number of iterations for the operation.

2. Select a site i ∈ S according to the top-down, left-right scanning order.
3. Change the label at site i to li ∈ {1, 2} with probability P (i)(L|X,Y,A)

defined by (6.40).
4. Construct the new configuration L = [li, L(S − i)], and compute the

energy U(L|X,Y,A).
5. If Umin > U(·), then set Umin = U(·) and Lmax = L. Increment n by

one. If n < N1, go to Step 2; otherwise, output Lmax, and terminate the
sampling process.

To further avoid the local maxima problem, we construct a pyramid for
each video frame X, and conduct the inference at each pyramid layer. The
original video frame is at the bottom of the pyramid, and the upper layer is
constructed by down-sampling the lower layer of the pyramid. The labeling
process starts from the top layer, and the result is used as the initial label
configuration of the lower layer. This process is repeated until the bottom
layer is reached. Because at the top-layer image, all image details except for
prominent features are eliminated, it is more probable that one obtains a good



6.6 Case Study: Video Foreground Object Segmentation by MRF 143

approximation to the globally optimal solution at this layer than other layers.
When the labeling process goes down to lower layers of the pyramid, more
image details become available, and the labeling process is able to refine the
labeling result obtained at the coarser levels. At the bottom layer, a fine-
tuned labeling that is close to the global optimum will be obtained with a
high probability.

6.6.8 Experimental Results

We tested our foreground object segmentation method using real videos taken
under different lighting and camera motions. In this subsection we show two
examples captured by a low-cost Creative webcam. The frame resolution is
640 by 480, and the frame rate is 6 fps. The quality of the webcam is close to
many cellphone video cameras. We allow the webcam to move during video
shootings and do not require that either the foreground or the background is
known or static. We obtain the weights for the potential functions through
experiments, and set α = 2, β = 3, and γ = 2 in our implementation.

The first sequence was taken from a rigid scene with a moving camera. The
scene is composed of a desktop calendar as the foreground object and a flat
background. Figure 6.5(a) shows the 1’st, 6’th, 11’th, 16’th and 21’st frames
of the sequence. Due to the low quality of the webcam, shape distortions can
be clearly observed from these images. Figure 6.5(b) presents the foreground
layer extracted by our method. From these images, it is clear that except for
mis-classifications of some pixels along the boundary of the calendar, the entire
foreground object has been correctly extracted in its entirety throughout the
whole sequence.

The second sequence was taken from a person moving and talking in front
of a camera while holding the camera himself. The camera was shaking ran-
domly with the person’s movement. Most features on the face were undergoing
non-rigid motions. There are areas of in the background with colors that are
almost identical to the human’s hair. Moreover, the human’s hair has a very
irregular shape, with some portions sticking out a lot (the top and right ear
portions). Despite these difficulties, it is clear from Figure 6.6 that our fore-
ground object segmentation method was able to extract the human and his
hair with relatively high accuracy. Again, there exist few mis-classifications
along the boundary of the human hair.



144 6 Markov Random Fields and Gibbs Sampling

(a) Original video frames (b) Extracted foreground images

Fig. 6.5. Foreground object segmentation result for the calendar video sequence
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(a) Original video frames (b) Extracted foreground images

Fig. 6.6. Foreground object segmentation result for the human video sequence
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Problems

6.1. For Gibbs distribution π(x) = 1
Z exp(− 1

T U(x)). Define 〈f〉 =∑
x π(x)f(x). Show that

〈U〉 = T 2 ∂ log Z

∂T
(6.41)

6.2. Consider the following energy function for x ∈ Rn

E(x) =
∑

ij

wijxixj

Under what condition this energy function defines a proper probability dis-
tribution?

6.3. Consider a probability distribution over binary-valued random variables
X and Y : P (X = 0, Y = 0) = P (x = 1, Y = 1) = a, P (X = 0, Y = 1) =
P (X = 1, Y = 0) = 0.5 − a. Suppose that we use the Gibbs sampling which
uniformly randomly chooses X or Y to update.

(a) Calculate the transition matrix of the implied Markov chain.
(b) Use some software such as MATLAB to plot a graph of a vs. the

absolute value of the second eigenvalue of the transition matrix.

6.4. Consider a data set that is composed of two clusters. The cluster mem-
bership c ∈ {1, 2} of each data vector x ∈ R2 follows a binomial distribution
p(c) ∼ Binomial(π, 1 − π), where

p(π) ∼ Beta(0.5, 0.5) (6.42)

p(µi) ∼ N(0, I) (6.43)

p(x|c = i, µi) ∼ N(µi, I) (6.44)

The data set D consists of 4 points x1 = (−1, 0), x2 = (−1,−1), x3 = (1, 0),
and x4 = (2, 0). Use Gibbs sampling to estimate the probability of P (ci = cj)
for i �= j

6.5. Let {Xt}0≤t≤T be a random sequence defined by

Xt+1 = aXt + εt

where X0, ε0, · · · εT−1 are independent Gaussian random variables with zero
mean and unit variance.

(a) Show that this model can be represented by a Markov random field.
Identify its neighborhood system.

(b) What is the potential function for this MRF?
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6.6. Consider a Gibbs sampler for a two dimensional Gaussian distribution
P (X,Y ) with zero mean. Suppose we sample X and Y alternatively. Let Xt

be the t-th sample from the Markov chain. Show that

Xt+1 = ρ2Xt + σx

√
1 − ρ4εt

where ρ = Cov(X,Y )√
V ar(X)V ar(Y )

is the correlation coefficient, σ2
x = V ar(X) and εt

is a Gaussian random variable with zero mean and unit variance.

6.7. Prove the correctness of Gibbs sampling when the sites to be updated
are chosen according to a predetermined order.

6.8. Gibbs sampling can be appled to any multivariate probability distribution

P (x(1), . . . , x(N))

on a set N with the phase space Λ. The basic step of Gibbs sampling for a
multivariate distribution P (x(1), . . . , x(N)) consists of selecting a coordinate
number i ∈ [1, N ] at random, and then choosing the new value y(i) of the
corresponding coordinate, with probability

P (y(i) | x(1), . . . , x(i − 1), x(i + 1), . . . , x(N)) .

Prove that P is the stationary distribution of the corresponding chain.

6.9. In Example 6.6 of the traveling salesman problem, a neighborhood
system of the state space is defined. Prove any two states is connected, i.e.,
for any two states s and t, there always exists a sequence of states s1 · · · sn

such that s1 ∈ N(s), sn ∈ N(t), and sk ∈ N(sk+1)
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Hidden Markov Models

In Chap. 5, we described Markov chains in which each state corresponds to
an observable physical event/object. However, this model is too restrictive to
be applicable to many problems of interest. In this chapter, we present hidden
Markov models that extend Markov chains by adding more model freedoms
while avoiding a substantial complication to the basic structure of Markov
chains. Hidden Markov models achieve this additional model freedoms by
letting the states of the chain generate observable data and hiding the state
sequence itself from the observer.

We start the chapter with a sample problem that can not be fully mod-
eled by Markov chains. Through this example, we demonstrate why more
model freedoms are needed, and how Markov chains are extended by Hidden
Markov Models (HMM). Following the introduction, we present three basic
problems for HMMs and describe their respective solutions. We also intro-
duce the Expectation-Maximization (EM) algorithm and use it to prove the
Baum-Welch algorithm. The EM algorithm is a very powerful, general method
that is applicable to many training-based model estimation problems, while
the Baum-Welch algorithm is a special version of the EM algorithm that is
particularly useful for estimating maximum likelihood parameters for HMMs.
At the end of the chapter, we provide a case study to apply HMMs for the
task of baseball highlight detections from TV broadcasted videos.

7.1 Markov Chains vs. Hidden Markov Models

Consider a sequence of ball drawing experiments with the following scenario.
A room is partitioned into two parts with an opaque curtain. At one side of the
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curtain, person A conducts the ball drawing experiments, while at the other
side of the curtain, person B records the outcomes of the experiments. The
experiments are conducted with a total of N boxes, each of which contains a
large number of balls of M different colors. The ball drawing process starts
with an initial box. From the box, person A draws a ball at random, and
tells person B the color of the ball. Except for the ball’s color, person B will
not be informed of any other information. After the observation, the ball is
returned to the box from which it was drawn. Next, person A selects a new box
according to the random selection process associated with the current box, and
performs the operations of randomly drawing a ball, telling person B the color
of the ball, and returning the ball to the box. In such a manner, a sequence
of hidden ball drawing experiments are performed, yielding a sequence of ball
color observations. Here the problems are:

1. Can we compute the probability of observing a specific sequence of obser-
vations?

2. Given a specific sequence of observations, can we compute the most likely
sequence of boxes from which the balls are drawn?

3. Given many observation sequences, can we compute the probabilities of
transiting between pairs of boxes, as well as the probabilities of observing
specific ball colors for each of the boxes?

It is obvious that there are two stochastic processes associated with the ball
drawing experiments: a process of randomly drawing balls from the selected
boxes and observing their colors, which is an observable process, and a process
of randomly selecting boxes to draw balls, which is a hidden process, from
person B’s point of view. It is also obvious that a Markov chain is insufficient
to model this problem. Given a Markov chain, each state of the chain must
correspond to an observable physical event/object, which is the color of a ball
in the above example. Therefore, using a Markov chain, we can only model the
observable process of ball drawings and color observations, and will completely
drop off the hidden process of box selections. Consequently, with a Markov
chain, solutions to problems 2 and 3 listed above are completely out of the
question, while a solution to problem 1 is also doubtful due to the insufficient
modeling of the problem by the Markov chain.

The above ball drawing experiments explain the reason why we want to
extend Markov chains to allow more model freedoms. HMMs achieve this goal
by letting each state of the chain generate observable data with a probability
distribution while hiding the state sequence from the observer. Using an HMM,
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(b) The corresponding three-state hidden Markov model

Fig. 7.1. Markov chain vs. hidden Markov model. With the Markov chain model,

each state corresponds to a ball color, whereas with the hidden Markov model,

each state corresponds to a box, and is characterized by the conditional probability

distribution P (y|s) over the ball colors y given the state s
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the above ball drawing experiments will be modeled as shown in Fig. 7.1. In
this figure, each state corresponds to a different box, and is characterized
by a probability distribution over the M different ball colors. The random
box selection process is modeled as transitions between states. In analogy
to Markov chains, state transitions are specified by links connecting pairs of
states, with each link possessing a transition probability.

In summary, a hidden Markov model is uniquely determined by the fol-
lowing five model components:

1. A state space S. The state space of an HMM is usually countable, and
its elements can be denoted by i, j, k, · · ·. Although the states are hidden,
for many practical applications, there is often some physical implication
attached to each state of the model. For example, in the HMM modeling
the above ball drawing experiments, each state corresponds to a different
box containing balls of M different colors.

2. An output set Y . Elements yi ∈ Y correspond to the physical outputs of
the system being modeled. In the ball drawing experiments, the outputs
are the colors of the balls drawn from the selected boxes.

3. A state transition matrix P = {pij}, where pij = P (j|i), i, j ∈ S.
4. An output probability distribution matrix Q = {qsy}, where qsy = P (y|s)

is the probability of generating output y at state s, and y ∈ Y , s ∈ S.
5. An initial state distribution π = {πi}, where i ∈ S.

Comparing the above model elements with those of Markov chains (Sect.
5.1), one observes that elements 1, 3, 5 are common for both the models,
while elements 2, 4 are the extensions to Markov chain models. Indeed, they
are the elements that model the physical outputs generated by each state of
the HMM.

Given the above model elements, the probability of observing an output
sequence y1, y2, . . . , yn from the HMM is given by

P (y1, y2, . . . , yn) =
∑

s1,...,sn

πs1P (y1|s1)
n∏

i=2

P (si|si−1)P (yi|si)

=
∑

s1,...,sn

πs1qs1y1

n∏

i=2

psi−1si
qsiyi

, (7.1)

where s1, . . . , sn denotes one possible state transition sequence generating the
specified output sequence, and s1 is the initial state of the HMM. Given
a particular state transition sequence s1, s2, . . . , sn, the output sequence
y1, y2, . . . , yn is generated as follows.
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1. Set i = 1.
2. If i = 1, select the initial state s1 according to the initial state distribution

π.
3. If i > 1, transit to the next state si according to the state transition

probability distribution P (si|si−1).
4. Generate yi according to the output probability distribution P (yi|si).
5. Set i = i + 1. Go to Step 3 if i < n; otherwise terminate the procedure.

Clearly, the above procedure can be regarded as a model to explain how a
specific output sequence y1, y2, . . . , yn can be generated by the system being
modeled. The probability of observing y1, y2, . . . , yn from the system can be
computed by enumerating all possible state transition sequences s1, s2, . . . , sn,
and summing the probabilities that s1, s2, . . . , sn generates y1, y2, . . . , yn. Be-
cause of this property, HMMs are categorized as a typical generative model
for statistical inferences.

7.2 Three Basic Problems for HMMs

In Sect. 7.1, we enumerated three problems using the example of ball drawing
experiments. These three problems are the most basic problems for HMMs,
and other problems concerning HMMs can be decomposed into one of them in
general. In this section, we formalize these three basic problems, and describe
their typical applications in real-world problems.

As described in Sect. 7.1, an HMM can be uniquely determined by the
five model components: state space S, output set Y , state transition matrix
P, output probability distribution matrix Q, and initial state distribution π.
Among these five model components, S and Y correspond to the physical
structure, while P, Q, and π are the statistical parameters of an HMM. It
turns out that there exist no good ways to estimate both the structure and
the parameters for an HMM automatically. The best we can do is to use our
knowledge of the problem and our intuition to design the HMM structure,
and to estimate the parameters for the HMM of the given structure. In the
following part of this chapter, we use the compact notation λ = (P,Q,π) to
denote the complete parameter set of an HMM.

We formalize the three basic problems as follows:

Problem 1: Given the model λ and the observation sequence y =
y1, y2, · · · , yn, how do we efficiently compute P (y|λ), the probability of
the observation sequence given the model?
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Problem 2: Given the model λ and the observation sequence y =
y1, y2, · · · , yn, how do we efficiently compute the most probable state
sequence s∗ = s1, s2, · · · , sn that generates the observation sequence y,
s∗ = arg maxs P (s |y,λ).

Problem 3: Given many observation sequences yi, how do we find the opti-
mal model parameter set λ that maximizes P (yi|λ) for all yi.

In the above list, Problem 1 is the evaluation problem that aims to com-
pute the likelihood of generating the observed output sequence by the given
model. The likelihood computation is extremely useful for statistical infer-
ences. Consider the case where HMMs are used to detect events of interest
from baseball game videos (such as home runs, outfield flies, infield hit, etc).
One common way of conducting such event detections is to train an indi-
vidual HMM for each type of events. For a new video clip, its event can be
inferred by computing the likelihood of the video clip using all the HMMs,
and choosing the event whose corresponding HMM gives the highest likeli-
hood measure. Therefore, the solution to Problem 1 lays the foundation for
HMM-based statistical inferences.

Problem 2 is the one that strives to identify the hidden part of the given
model, i.e., to find the most probable state sequence generating the observed
output sequence. The solution to Problem 2 plays essential roles for speech
recognition problems. For the task of speech recognition, HMMs are generally
constructed in such a way that vocal utterances correspond to the observa-
tions, and words correspond to the hidden states. Therefore, to recognize the
words spoken by the given utterance sequence, one needs to identify the most
probable state sequence generating that utterance sequence.

Problem 3 is the one that concerns the training of HMMs. During the
HMM training process, a large amount of observation sequences are provided
as training data, and the model parameters are adjusted to best fit the pro-
vided training data. HMM training is crucial for appropriate applications of
HMMs. It allows us to create the models that maximize the likelihood of the
provided training data, and these models are generally the ones that best
describe the real systems/phenomena to be modeled.

7.3 Solution to Likelihood Computation

Given an observation sequence y = y1, y2, · · · , yn, we wish to compute
the probability of observing the sequence P (y|λ), given the model λ.
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The most straightforward way of computing this is to use the formula
(7.1). In other words, we obtain P (y|λ) by computing the probability
P (y1, y2, . . . , yn | s1, s2, . . . , sn) that s1, s2, . . . , sn generates y1, y2, . . . , yn, and
summing it over all possible state transition sequences s1, s2, . . . , sn. However,
a simple math reveals that this straightforward procedure has the complexity
of O(2n · |S|n) (|S| is the number of states in the state space S), which is
computationally prohibitive even for small values of |S| and n. For example,
for |S| = 5, n = 100, it requires the order of 2 ·100 ·5100 ≈ 1072 computations!

There exists a more efficient procedure to compute the probability P (y|λ),
called the forward-backward algorithm. The forward part of this algorithm
defines the forward variable αt(i) as follows

αt(i) = P (y1, y2, . . . , yt, st = i) , (7.2)

where st = i means that the stochastic process visits state i at time t.
This is the joint probability of observing the partial observation sequence
y1, y2, . . . , yt, and state i at time t. The forward variable αt(i) can be com-
puted recursively as follows:

(1) Initialization:
α1(i) = πiqiy1 , 1 ≤ i ≤ |S|. (7.3)

(2) Recursion:

αt(j) =

⎡

⎣
|S|∑

i=1

αt−1(i)pij

⎤

⎦ qjyt
, 2 ≤ t ≤ n, 1 ≤ j ≤ |S|. (7.4)

By definition (7.2), the probability P (y1, y2, . . . , yn|λ) then becomes

P (y1, y2, . . . , yn|λ) =
|S|∑

i=1

αn(i). (7.5)

The computation complexity for calculating αt(j), 1 ≤ t ≤ n, 1 ≤ j ≤ |S|,
is O(n · |S|2), compared to O(2n · |S|n) for the straightforward procedure. For
|S| = 5, n = 100, we need about 3000 computations for the forward algorithm,
versus 1072 computations, a saving of about 69 orders of magnitude.

The reason behind such a huge discrepancy between the two al-
gorithms is that the straightforward procedure computes the probabil-
ity P (y1, y2, . . . , yn | s1, s2, . . . , sn) for each possible state sequence s =
s1, s2, . . . , sn with a huge amount of repeated calculations. Consider the
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following two specific state sequences: s = s1, s2, . . . , sn−1, i, and s′ =
s1, s2, . . . , sn−1, j, where all the states except for the last one are the same.
The naive straightforward algorithm computes the probabilities P (y|s,λ), and
P (y|s′,λ) as follows

P (y|s,λ) = πs1qs1y1ps1s2qs2y2 · · · psn−2sn−1qsn−1yn−1psn−1iqiyn
,

P (y|s′,λ) = πs1qs1y1ps1s2qs2y2 · · · psn−2sn−1qsn−1yn−1psn−1jqjyn
.

Clearly, all the factors except for the last two are the same in the right-hand
side of the above two equalities, and most computation efforts have been
wasted on repeating the same multiplications in computing the probabilities
for the two very similar state sequences. The forward algorithm accomplishes
the dramatic computational saving by taking the advantage of the trellis struc-
ture of HMMs to eliminate the repeated computations of the same factors (see
Fig. 7.2). The key is that since there are only |S| states, all the possible state
sequences will re-merge into these |S| states at each stage, no matter how long
the observation sequence. Therefore, instead of enumerating all the possible
state sequences by traversing through one state sequence after another (hor-
izontal enumeration), we can enumerate them by traversing through all the
possible states st = j, 1 ≤ j ≤ |S|, at each time slot t in the trellis (verti-
cal enumeration). This traversing order can be mathematically expressed as
follows

P (y|λ) =
∑

s1,s2,...,sn

πs1qs1y1ps1s2qs2y2 · · · psn−1sn
qsnyn

=
∑

sn

· · ·
∑

s2

∑

s1

(πs1qs1y1)ps1s2qs2y2 · · · psn−1sn
qsnyn

=
∑

sn

· · ·
∑

s2

(
∑

s1

α1(s1)Ps1s2

)
qs2y2 · · · psn−1sn

qsnyn

=
∑

sn

· · ·
∑

s3

(
∑

s2

α2(s2)ps2s3

)
· · · psn−1sn

qsnyn

· · · · · ·

=
∑

sn

⎛

⎝
∑

sn−1

αn−1(sn−1)psn−1sn

⎞

⎠ qsnyn

=
∑

sn

αn(sn) . (7.6)

From the above computations, one can observe that the forward variables
αt(st) are shared by many terms. The strategy here is to pre-compute these
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Fig. 7.2. The trellis structure within the HMM computation

forward variables, and re-use them whenever they are needed. At each step t,
1 ≤ t ≤ n, it only calculates values of αt(st), 1 ≤ st ≤ |S|, where each calcula-
tion involves only |S| pre-computed values of αt−1(st−1). Indeed, by changing
the order of enumerations from horizontal to vertical and pre-computing the
forward variables, the forward algorithm completely eliminates the repeated
multiplications of the same factors.

Generally, we only need the forward part of the forward-backward algo-
rithm to compute the likelihood of an observation sequence. In the following
part of this section, we will introduce the backward part of the algorithm as
well since it will be used to help solve Problem 3.

In a similar manner, the backward part of the algorithm defines the back-
ward variable βt(i) as follows

βt(i) = P (yt+1, yt+2, . . . , yn | st = i) , (7.7)

which is the probability of the partial observation sequence from yt+1 to the
end, given state st = i at time t. Again, we can compute βt(i) recursively as
follows:

(1) Initialization:
βn(i) = 1, 1 ≤ i ≤ n. (7.8)
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(2) Recursion:

βt(i) =
|S|∑

j=1

pijqjyt+1βt+1(j), t = n − 1, n − 2, . . . , 1, 1 ≤ i ≤ |S|. (7.9)

From definition (7.7), using the backward variables, the probability
P (y1, y2, . . . , yn|λ) can be computed as

P (y1, y2, . . . , yn|λ) =
|S|∑

i=1

πiqiy1β1(i). (7.10)

Again, the complexity of computing βt(i), 1 ≤ t ≤ n, 1 ≤ i ≤ |S| is
O(n · |S|2), and the backward part of the algorithm eliminates the repeated
computations using the same strategy of the forward part of the algorithm.

7.4 Solution to Finding Likeliest State Sequence

Given an observation sequence y = y1, y2, . . . , yn, we wish to find the
most likely state sequence s∗ = s∗1, s

∗
2, . . . , s

∗
n that generates it, i.e., s∗ =

arg maxs P (s |y). Note that

P (s1, s2, . . . , sn | y1, y2, . . . , yn) =
P (s1, s2, . . . , sn, y1, y2, . . . , yn)

P (y1, y2, . . . , yn)
, (7.11)

thus maximizing P (s |y) is equivalent to maximizing the numerator of the
right-hand side of the above equation.

Observe that because the underlying state process is Markovian, according
to the generalized Markov property (5.12) defined in Chap. 5, for all t,

P (s1, . . . , st, st+1, . . . , sn, y1, . . . , yt, yt+1, . . . , yn)

= P (s1, . . . , st, y1, . . . , yt)P (st+1, . . . , sn, yt+1, . . . , yn | s1, . . . , st, y1, . . . , yt)

= P (s1, . . . , st, y1, . . . , yt)P (st+1, . . . , sn, yt+1, . . . , yn | st). (7.12)

Therefore,

max
s1,s2,...,sn

P (s1, . . . , st, st+1, . . . , sn, y1, . . . , yt, yt+1, . . . , yn)

= max
st,st+1,...,sn

[P (st+1, . . . , sn, yt+1, . . . , yn | st)

× max
s1,s2,...,st−1

P (s1, . . . , st−1, st, y1, . . . , yt)] (7.13)

Defining
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γt(i) = max
s1,s2,...,st−1

P (s1, . . . , st−1, st = i, y1, . . . , yt) (7.14)

and substituting it into (7.13), we have

max
s1,s2,...,sn

P (s1, . . . , st, st+1, . . . , sn, y1, . . . , yt, yt+1, . . . , yn)

= max
i

{
max

st+1,...,sn

[P (st+1, . . . , sn, yt+1, . . . , yn | st = i)γt(i)]
}

. (7.15)

What this equation tells us is that, we can find the most likely state sequence
s1, . . . , st−1, st, st+1, . . . , sn with the following three steps:

(1) For each state st = i at time t, i ∈ S, find the most likely sub-sequence
s1(i), . . . , st−1(i) leading into st = i. This corresponds to the computation
of γt(i).

(2) Find the most likely sequence st+1(i), . . . , sn(i) leading out of
st = i. This corresponds to the computation of max(st+1,...,sn)

P (st+1, . . . , sn, yt+1, . . . , yn | st = i).
(3) Find the state st that maximizes the probability of the complete state se-

quence. This corresponds to the computation of the outer-most maximum
maxi{·} of (7.15).

Again, the quantity γt(i) can be computed recursively as follows:

γt+1(j) =
(
max

i
γt(i)pij

)
qjyt+1 . (7.16)

Note that from definition (7.14),

max
s1,...,sn

P (s1, . . . , sn, y1, . . . , yn) = max
i

γn(i). (7.17)

Therefore, instead of computing the most likely state sequence using the above
procedure, it will be more efficient to compute it by recursively computing the
quantities γt(i).

Equation (7.16) leads directly to the Viterbi algorithm that finds the max-
imizing state sequence for the given observation sequence. In the algorithm,
we use 2-D array A(t, j) to keep track of the arguments that maximize (7.16)
for each t and j. The complete procedure can be stated as follows:

(1) Initialization:

γ1(i) = πiqiy1 , A(1, i) = 0, 1 ≤ i ≤ |S|. (7.18)
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(2) Recursion:

γt(j) =
(
max

i
γt−1(i)pij

)
qjyt

, (7.19)

A(t, j) = arg max
i

[γt−1(i)pij ] , (7.20)

for 2 ≤ t ≤ n, 1 ≤ j ≤ |S|.

(3)Termination:

max
s

P (s,y) = max
i

γn(i), (7.21)

s∗ = arg max
i

γn(i). (7.22)

(4) Path backtracking:

s∗t = A(t + 1, s∗t+1), t = n − 1, n − 2, . . . , 1. (7.23)

It is noteworthy that the Viterbi algorithm is one of the famous dynamic
programming methods. It has wide applications in data alignment, data en-
coding and decoding, string matching and search, etc.

7.5 Solution to HMM Training

In the proceeding two sections, we presented the solutions for computing the
likelihood of an observation sequence P (y|λ), and for finding the most likely
state sequence that generates the observation sequence s∗ = arg maxs P (s|y).
These two solutions all assume that the HMM model parameters λ =
(P,Q,π) are given, and rely on these parameters intensively throughout the
computations. In this section, we provide the solution for estimating the max-
imum likelihood model parameters for the HMM using the observation se-
quences (training data) generated by it, λ∗ = arg maxλ P (yi|λ). In the lit-
erature, the process of estimating the optimal parameters for a statistical
inference model based on a set of training data observed from the system to
be modeled is called the training process. As pointed out at the beginning of
Sect. 7.2, for HMM training, there is no good resolution for estimating both
the HMM structure and the parameters automatically. The best we can do is
to manually design the HMM structure using our knowledge about the prob-
lem, and to automatically estimate the parameter values for the model of the
given structure.

The HMM training algorithm uses both the forward and backward vari-
ables αt(i), βt(i), as well as the following notation
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ξt(i, j) = P (st = i, st+1 = j | y1, y2, . . . , yn), (7.24)

which is the probability of being in state i at time t, and state j at time t+1.
From the definitions of the forward and backward variables, it is clear that
we can write ξt(i, j) in the form

ξt(i, j) =
αt(i)pijqjyt+1βt+1(j)

∑|S|
i=1

∑|S|
j=1 αt(i)pijqjyt+1βt+1(j)

. (7.25)

Define the variable ct(i) as

ct(i) = P (st = i | y1, y2, . . . , yn) , (7.26)

i.e. the probability of being in state i at time t, we have

ct(i) =
|S|∑

j=1

ξt(i, j) . (7.27)

If we sum ct(i) over the time index t, we get a quantity that can be interpreted
as the expected number of times state i is visited, or equivalently, the expected
number of transitions made from state i (if we exclude the time instant t = n

from the summation). Similarly, the summation of ξt(i, j) over t (from t = 1
to t = n − 1) can be interpreted as the expected number of transitions from
state i to state j. That is

n−1∑

t=1

ct(i) = expected no. of transitions from state i, (7.28)

n−1∑

t=1

ξt(i, j) = expected no. of transitions from state i to state j. (7.29)

Using the above formulas, we can estimate the model parameters of an
HMM as follows

πi = c1(i) , (7.30)

pij =
∑n−1

t=1 ξt(i, j)∑n−1
t=1 ct(i)

, (7.31)

qjyk
=

∑n
t=1 ct(j)δ(yt = yk)∑n

t=1 ct(j)
, (7.32)

where δ(yt = yk) is the delta function that equals one if the observation at
time t is yt = yk, and equals zero otherwise.
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The above estimation procedure seems to have a fatal flaw: Equations
(7.30), (7.31), and (7.32) use the values of the quantities ξt(i, j) and ct(i),
which in turn are computed using the values of the model parameters λ =
(π,P,Q). Fortunately, there is a good way out: We put the above algorithm
into a loop, start with a guess at πi, pij , and qiyk

to compute ξt(i, j) and
ct(i), obtain better estimates of πi, pij , and qiyk

by plugging ξt(i, j) and ct(i)
into (7.30), (7.31), and (7.32), ......, and run the algorithm repeatedly until
the model parameters converge.

The above procedure leads directly to the Baum-Welch method which is
a special version of the EM algorithm (the mathematical proof of the method
will be provided in the following section). The summary of the Baum-Welch
method is described as follows:

1. Initialization: Make a guess at πi, pij , and qiyk
for all 1 ≤ i ≤ |S|. Denote

λ = (P,Q,π).
2. Forward-backward pass: Use the model parameters λ to compute αt(i)

and βt(j) for all 1 ≤ i ≤ |S|, 1 ≤ t ≤ n, using (7.3), (7.4), and (7.8), (7.9),
respectively.

3. Parameter estimation: Use the forward and backward variables αt(i) and
βt(j) to estimate better model parameters λ = (P,Q,π) by (7.30), (7.31),
and (7.32).

4. Repeat Step 2 and 3 until the model parameters λ = (P,Q,π) converge.

7.6 Expectation-Maximization Algorithm

and its Variances

In this section, we will derive the Expectation-Maximization (EM) algorithm
and use it to verify the mathematical correctness of the Baum-Welch algo-
rithm. Baum-Welch algorithm can be considered as a special version of the
EM algorithm, and is particularly useful for estimating maximum likelihood
parameters for HMMs. It is noteworthy that the applicability of the EM al-
gorithm is, of course, not restricted to the training of HMMs, it is applicable
to most training-based model estimation problems.

7.6.1 Expectation-Maximization Algorithm

The derivation of the EM algorithm is mainly based on a special case of
Jensen’s inequality given by the following theorem.
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Theorem 7.1 (Jensen’s Inequality). If P (X) and Q(X) are two discrete
probability distributions, then

∑

x

P (x) log P (x) ≥
∑

x

P (x) log Q(x) , (7.33)

with equality if and only if P (X) = Q(X) for all x.

We will now develop the main theorem. Let Y , X be two random variables
that denote observable and hidden data, respectively. X is usually an auxiliary
variable governed by the parameter set θ that generates Y . Let Pθ(Y ), Pθ′(Y )
be the probability distributions of Y under the model parameter sets θ and
θ′, respectively. Because Pθ′(X|Y ) is a probability distribution that satisfies

∑

x

Pθ′(x|y) = 1 ,

and we can multiply a quantity by one without changing its value, we can
perform the mathematical derivations as follows:

log Pθ(y) − log Pθ′(y)

=
∑

x

Pθ′(x|y) log Pθ(y) −
∑

x

Pθ′(x|y) log Pθ′(y)

=
∑

x

Pθ′(x|y) log Pθ(y)
Pθ(x, y)
Pθ(x, y)

−
∑

x

Pθ′(x|y) log Pθ′(y)
Pθ′(x, y)
Pθ′(x, y)

=
∑

x

Pθ′(x|y) log
Pθ(x, y)
Pθ(x|y)

−
∑

x

Pθ′(x|y) log
Pθ′(x, y)
Pθ′(x|y)

=
∑

x

Pθ′(x|y) log Pθ(x, y) −
∑

x

Pθ′(x|y) log Pθ′(x, y)

+
∑

x

Pθ′(x|y) log Pθ′(x|y) −
∑

x

Pθ′(x|y) log Pθ(x|y)

=
∑

x

Pθ′(x|y) log Pθ(x, y) −
∑

x

Pθ′(x|y) log Pθ′(x, y) + Ω

≥
∑

x

Pθ′(x|y) log Pθ(x, y) −
∑

x

Pθ′(x|y) log Pθ′(x, y) , (7.34)

where following from Theorem 7.1,

Ω =
∑

x

Pθ′(x|y) log Pθ′(x|y) −
∑

x

Pθ′(x|y) log Pθ(x|y) ≥ 0 .

The above derivations have revealed that if the last quantity is positive,
so is the first. Therefore, we have proven the following theorem.
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Theorem 7.2. Let θ be the parameter set of the underlying statistical model,
Y and X be two random variables that denote observable and hidden data,
respectively, which are both governed by the parameter set θ. If

∑

x

Pθ′(x|y) log Pθ(x, y) >
∑

x

Pθ′(x|y) log Pθ′(x, y) , (7.35)

then
Pθ(Y ) > Pθ′(Y ) . (7.36)

Theorem 7.2 provides the mathematical foundation for the EM algorithm.
It says that if we start with the parameter set θ′ and find a new parameter
set θ for which the inequality (7.35) holds, then the observed data y will be
better modeled by θ than θ′

To take the best advantage of this hill-climbing theorem, typical imple-
mentations of the EM algorithm generally strive to find the parameter set
θ that maximizes the left-hand side of (7.35). As a result, the standard EM
algorithm usually starts with some initial values of the parameter set θ′, and
repeats the following two alternative steps until the value of Pθ′(Y ) stops
climbing.

(1) Expectation: Take the expectation of the random variable log Pθ(X,Y )
with respect to the old distribution Pθ′(X|Y ).

(2) Maximization: Maximize the expectation as a function of the argument
θ.

The above procedure explains the reason for the name Expectation-
Maximization. The key to the success in applying the EM algorithm is a
judicious choice of the auxiliary variable X that will allow us to maximize
the expectation of the left-hand side of (7.35). Such a choice is possible for
HMMs.

7.6.2 Baum-Welch Algorithm

We will now use Theorem 7.2 to derive the Baum-Welch algorithm. Denote
sequences of observations by y = y1, y2, . . . , yn, and sequences of states by
s = s1, s2, . . . , sn. The parameter set λ = (π,P,Q) consists of the totality of
the parameters that uniquely defines the HMM in question.

The derivation starts with the definition of the function
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φ(λ) =
∑

s

Pλ′(s|y) log Pλ(s,y) , (7.37)

which corresponds to the expectation step of the EM algorithm. We want
to find the maximum of the function with respect to λ, which corresponds
to the maximization step of the EM algorithm. Here, we will only show the
maximization of φ(λ) with respect to P = {pij}, and will leave the rest of
derivations as a problem (Problem 7.9) at the end of this chapter.

The maximization of φ(λ) with respect to P = {pij} can be accomplished
by differentiating φ(λ) with respect to pij , 1 ≤ i, j ≤ |S|, and equating the
result to zero. However, because pij ’s are the state transition probabilities
that satisfy ∑

j

pij = 1 ,

the maximization has to be conducted subject to the above stochastic con-
straint. Therefore, the parameter estimation problem becomes a constrained
optimization of φ(λ), and the Lagrange multiplier technique can be used to
find the solution. The Lagrange multiplier technique involves the definition of
the Lagrangian function using the Lagrangian multiplier µi

L(λ) = φ(λ) − µi

∑

j

pij , (7.38)

and the differentiation of L(λ) with respect to pij

∂

∂pij
L(λ) =

∂

∂pij

⎡

⎣φ(λ) − µi

∑

j

pij

⎤

⎦

=
∑

s

Pλ′(s|y)
∂

∂pij
Pλ(s,y)

Pλ(s,y)
− µi . (7.39)

Since Pλ(s,y) can be written as

Pλ(s,y) = πs1qs1y1ps1s2qs2y2ps2s3 · · · psn−1sn
qsnyn

, (7.40)

if we define cij(s) as the number of times the transition pij takes place in the
state sequence s, then there will exist the factor p

cij(s)
ij in the right-hand side

of the above equality. Therefore,

∂
∂pij

Pλ(s,y)

Pλ(s,y)
=

cij(s)
pij

. (7.41)

Equating (7.39) to zero yields
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∑

s

Pλ′(s|y)
cij(s)
pij

= µi , (7.42)

or equivalently,

pij =
1

µiPλ′(y)

∑

s

Pλ′(s,y)cij(s) =
1

Ki

∑

s

Pλ′(s,y)cij(s) , (7.43)

where Ki is a normalizing constant that ensures the stochastic constraint∑
j pij = 1. Using the delta function δ(·), we can re-write cij(s) as

cij(s) =
n−1∑

t=1

δ((st, st+1) = (i, j)) , (7.44)

where (st, st+1) denotes the transition from state st to state st+1. Using the
above definition, equality (7.43) becomes

pij =
1

Ki

n−1∑

t=1

∑

s

Pλ′(s,y)δ((st, st+1) = (i, j))

=
1

Ki

n−1∑

t=1

Pλ′(y1, . . . , yt, st = i)p′ijq
′
jyt+1

Pλ′(yt+2, . . . , yn | st+1 = j)

=
1

Ki

n−1∑

t=1

αt(i)p′ijq
′
jyt+1

βt+1(j)

=
∑n−1

t=1 ξt(i, j)∑n−1
t=1 ct(i)

, (7.45)

where αt(i), βt(j) are the forward, backward variables defined by (7.2), (7.7),
and ξt(i, j), ct(i) are the quantities defined by (7.25), (7.26), respectively.

Clearly, the maximization of φ(λ) with respect to P (subject to the con-
straint

∑
j pij = 1) has resulted in the transition probability pij that is exactly

the same as the quantity (7.31). In other words, the Baum-Welch algorithm
described in Sect. 7.5 computes the next values of the entire parameter set
using the EM algorithm at each iteration of the procedure. According to The-
orem 7.2, the new values λ of the parameter set models the observed data Y

better than the old values λ′: Pλ(Y ) > Pλ′(Y ). Therefore, we have proven
the correctness of the Baum-Welch algorithm based on Theorem 7.2.
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7.7 Case Study: Baseball Highlight Detection

Using HMMs

In this case study, we present our original work that applies hidden Markov
models to extract highlights from TV broadcasted baseball game videos [63].
We first briefly describe the objective of this work, followed by an overview
of the entire baseball highlight detection system. Then we provide detailed
explanations on the two major components of the system: camera shot clas-
sification and highlight detection based on hidden Markov models. Finally,
we present experimental evaluations using baseball videos, and reveal perfor-
mance results of the described system.

7.7.1 Objective

There are certain types of sport game videos, such as baseball, soccer, Amer-
ican football, etc, where eye-catching events usually account for a very small
percentage of a video. Living in a fast-paced information society with busy
daily lives, people are in increasing needs for technologies that will enable
them to watch only the highlights, or the portions of a video program that
are of particular interest to them. The ability to access highlights and skip the
less interesting portions of a video will become even more valuable for video
access using mobile terminal devices because these devices have limited mem-
ory and battery capacities, and are subject to expensive telecommunication
charges.

This work strives to automatically detect highlights from TV broadcasted
baseball game videos. We use HMMs to explore the specific spatial and tem-
poral structures of highlights in baseball game videos, which leads to improved
performances. Compared to previous works in the literature, our system can
detect more specific and higher level events, such as home runs or good catch
plays. It is worth noting that although our system is tuned for baseball games,
the statistical framework can be applied to other broadcast sports game videos
which have their own specific spatial and temporal structures.

7.7.2 Overview

Baseball videos have well-defined structures and domain rules. A baseball
game usually contains nine innings, and each inning consists of a top half and
a bottom half. Each half contains many plays, and each play starts with a ball
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pitching by a pitcher. Among all the valid baseball plays, those plays which
either bring changes to the out-count, or contribute directly or indirectly to the
overall score are the candidates of baseball highlights which are of interest to
most baseball fans. In this work, we are interested in four types of highlights:
home run, hit, catch, and in-diamond play. Hit and catch refer to good plays
by the offense and defense team, respectively. In-diamond play refers to a
highlight when the ball never goes outside the diamond area. The result can
be in favor of either team. Actually it is often difficult to visually decide the
outcome of an in-diamond play especially when they are close calls, therefore
we put them all in one category.

As with any successful vision systems, specific domain knowledge is ex-
ploited for developing our baseball highlight detection system. Typically, the
broadcast of a baseball game is made by a fixed number of cameras at fixed
locations around the field, and each camera has a certain assignment for broad-
casting the game. For example, a pitching view is usually taken by a camera
located behind the pitcher, an outfield fly is usually shot by a camera behind
home base, and an in-diamond play is usually tracked by cameras either at the
left or right side of the baseball diamond field. This baseball game broadcast-
ing technique results in a few unique types of camera shots1 that constitute
most part of a baseball video. Each category of highlights typically consists
of a similar transitional pattern of these unique camera shots. For example,
a typical home run highlight usually consists of four or more shots, which
starts from a pitcher’s view, followed by a panning outfield and audience view
in which the video camera follows the flying ball, and ends with a global
or closeup view of the player running to home base. The limited number of
unique view types and similar patterns of view transitions for each type of
highlights have certainly made the tasks of detecting and classifying baseball
highlights feasible and tractable.

Based on the above observations, we develop our baseball highlight detec-
tion system using the following approach. First, we identify seven important
types of camera shots, which constitute most baseball highlights of interest.
The seven types of camera shots are: (1) pitch view, (2) catch overview, (3)
pitcher closeup view, (4) running overview, (5) running closeup view, (6) audi-
ence view, and (7) touch-base closeup view (see Fig. 7.3 for examples). Given
an input video, we segment it into individual camera shots, and classify each

1 A shot is defined as a video segment taken by the same camera with continuous

camera motion.
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shot into one of the above seven types. Although camera shots of the same
view type differ from game to game, they strongly exhibit common statisti-
cal properties of certain measurements due to the fact that they are likely to
be taken by the broadcasting cameras mounted at similar locations, covering
similar portions of the field, and used by the camera-man for similar purposes.
In Sect. 7.7.3, we will present a method for camera shot classifications using
Naive Bayes classifier. The output of this method is a set of probabilities each
of which indicates the likelihood of the input shot belonging to a particular
view class.

Second, we take the camera shot classification probabilities as the input,
and use an HMM to model each type of highlights. As stated earlier, most
highlights are composed of the seven types of camera shots, and the same
type of highlights usually have a similar transition pattern of these view types.
Since the contexts of the same type of highlights may vary to certain extent,
we use HMMs to model common statistical patterns as well as variations of
the highlights. In Sect. 7.7.5, we will explain how to apply HMMs to the tasks
of baseball highlight detections and classifications.

In summary, our baseball highlight detection system consists of the fol-
lowing main operations:

1. Camera shot segmentation: Segment a digitized baseball game video into
camera shots.

2. View type classification: For each camera shot, compute the probabilities
of the shot being each of the seven view types.

3. Highlight detection: Take the sequence of the view classification proba-
bilities as the input, compute the probability of each type of highlights
using the corresponding HMM, assign the sequence to the highlight type
whose corresponding HMM gives the highest probability that exceeds a
predefined threshold.

7.7.3 Camera Shot Classification

In Sect. 7.7.2, we defined seven types of camera shots that constitute most
part of a baseball video. Typical images from these types of camera shots
are shown in Figure 7.3. We notice that camera shots of the same type often
have similar distributions of color, texture, and camera motion, while camera
shots of different types usually differ in those distributions. For example, the
color distribution of a catch overview is very different from that of a running
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(1) Pitch view (2) Catch overview

(3) Pitcher closeup view (4) Running overview

(5) Running closeup view (6) Audience view

(7) Touch-base closeup view

Fig. 7.3. Seven important types of camera shots which constitute most baseball

highlights of interest
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overview because cameras cover different portions of the baseball field. The
camera motion distribution of a catch closeup view is very different from that
of a running closeup view since the camera movement is relatively slow in
the former and very fast in the later. Therefore we expect that with a proper
statistical model it is feasible to extract the common statistical properties
among the same type of camera shots and use those statistics to discriminate
among different types of shots.

In addition, we have the following considerations for the camera shot clas-
sifier.

1. The classification should be based on features that can be computed ef-
ficiently and reliably. This consideration is to ensure timely processing
and robustness of the system, and it excludes those features which involve
difficult image processing tasks, such as identification of players or the
stadium.

2. We use the same feature set across all the view types, therefore the method
is readily extendible to new types of camera shots if added.

We first present the classifier and then describe the features we use in more
details.

Given a set of features y = {Mk | k = 1, . . . , n}, extracted from a camera
shot, we are interested in computing the probability of the shot being the
view type si, 1 ≤ i ≤ 7. This probability P (si |y) can be computed using the
Bayes’ rule

P (si |y) =
P (y | si)P (si)

P (y)
. (7.46)

Assuming all the features are independent of each other, (7.46) can be sim-
plified as follows:

P (si |y) =
P (si)

∏n
k=1 P (Mk | si)∑7

i=1(P (si)
∏n

k=1 P (Mk | si))
. (7.47)

The priori probability of each view type P (si) can be estimated from
the training data. The estimation of P (Mk | si) for each feature Mk requires
more considerations because a camera shot is composed of multiple video
frames (say, N), and we will have multiple measurements of Mk from the shot,
Mk = mj

k, j = 1, . . . , N . Therefore, a more accurate expression of P (Mk | si)
can be written as P (Mk = mj

k, j = 1, . . . , N | si). In the next subsection,
we will introduce two ways of computing the probability P (Mk = mj

k, j =
1, . . . , N | si).
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7.7.4 Feature Extraction

The features we currently use are the field descriptor, edge descriptor, grass
amount, sand amount, camera motion and player height. These features are
extracted from a given camera shot as follows.

Field descriptor: We divide each video frame into 3 × 3 blocks and label
each block as either field if the grass or sand color is detected from it, or
non-field otherwise. Field descriptor describes the shape of the field if the
field is in the video frame.

Edge descriptor: The video frame is divided into 3 × 3 blocks, analogous
to computing the field descriptor. Each block is labeled as either edge if
certain amount of edge pixels are detected or non-edge otherwise. Edge
descriptor describes the pattern of highly textured regions, such as regions
of the audience and players.

Grass and sand: The amount of grass and sand colors detected in the frame
by color matching.

Camera motion: The camera motion is represented by the motion parame-
ters estimated from adjacent pair of video frames. The parameters include
pan, tilt and zoom of the camera.

Player height: In each video frame, vertical edges are first detected and
are grouped into boxes. Given a video segment, those boxes which are
consistently detected are assumed to be players. The height of each box
is measured as the height of a player in the frame.

Given a camera shot, we compute all the features Mk for each frame,
therefore for each feature Mk we have a set of measurements denoted as
mj

k, j = 1, . . . , N , where N is the number of frames in the camera shot.
There are several possible ways to compute the probability P (Mk = mj

k, j =
1, . . . , N | si):

(1) Assume Mk is independent from frame to frame, then

P (Mk = mj
k, j = 1, . . . , N | si) =

N∏

j=1

P (Mk = mj
k | si) , (7.48)

where P (Mk = mj
k | si) can be easily computed from the histogram H

(si)
Mk

representing P (Mk | si). More precisely, for each pair of feature Mk and
view type si, a histogram H

(si)
Mk

is learned from training data during the

training stage. Using H
(si)
Mk

, P (Mk = mj
k | si) is obtained by finding the
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histogram bin that contains mj
k, and calculating the ratio of this bin to

the entire histogram.
(2) Alternatively we can construct a histogram H

(s)
Mk

with mj
k, j = 1, . . . , N ,

for the entire shot s, and then compute the distance between H
(s)
Mk

and

H
(si)
Mk

. The probability P (Mk = mj
k, j = 1, . . . , N | si) can then be defined

by this distance. In our implementation, this distance is computed using
the standard histogram intersection metric.

Both methods appear to be theoretically reasonable, but our experiments
show the method (2) works better in practice.

7.7.5 Highlight Detection

We accomplish the task of highlight detection and classification by applying
HMMs to model the context of camera shots. To apply HMMs, we need to
define the following model components:

1. State space S: which corresponds to the seven view types defined in Sect.
7.7.2.

2. Observation set Y = {yl}: which is the feature set we compute for each
camera shot.

3. Observation probability set Q = {P (yl|si)}: In Sect. 7.7.4, we already
explained how to compute the probability P (Mk = mj

k, j = 1, . . . , N | si).
The probability P (yl|si) for a particular camera shot can be computed as

P (yl|si) =
n∏

k=1

P (Mk = mj
k, j = 1, . . . , N | si) ,

where n is the number of feature types extracted from each camera shot.
4. State transition probability P = {pij}: given the class of highlights, the

transition probability between view types pij = P (sj | si) can be learned
from training data.

5. Initial state distribution π: given the class of highlights, the initial distri-
bution can also be learned from training data.

For each class of highlights, we construct an HMM whose structure reflects
the view transition pattern of that class. All it takes is to learn the transition
probabilities and initial state distribution, and the HMM training algorithm
described in Sect. 7.5 is used to learning these model parameters. Figure
2 shows the four HMMs corresponding to the four classes of highlights we
currently work on.
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The following is the algorithm for detecting highlights composed of L cam-
era shots:

1. For each camera shot i, extract all the features Mk, k = 1, . . . , n, from
the shot i.

2. Compute the observation probability P (yi | sj), for each camera shot i

and each view type sj .
3. For each HMM λk representing highlight category k, compute

the probability of observing the given observation sequence: ζk =
P (y1, . . . ,yL |λk). The probability ζk can be computed with the stan-
dard forward-backward algorithm described in Sect. 7.3.

4. If ζ = max{ζi} exceeds certain threshold, then camera shot i is assigned
to the highlight category h = arg maxi{ζi}.

7.7.6 Experimental Evaluation

We tested our baseball highlight detection system using six digitized baseball
game videos with a total of 18 hours. These games were recorded from TV
broadcasting, and consist of different teams, and stadiums. We manually la-
beled all six videos, and used half of them as training and the other has as
testing data.

We use the precision and recall as the evaluation metrics. These two met-
rics are defined as follows:

precision =
No. of correctly labeled videos in the category

total No. of videos labeled as the category
(7.49)

recall =
No. of correctly labeled videos in the category

total No. of videos in the category
(7.50)

Table 7.1 shows the experimental result for camera shot classifications.
The classification rate of running closeup view and touch base closeup view
are relatively low. The reason mainly lies in the large view variation for those
shots, which in turn cause the distributions of the features we used less peaked.
In other words, the features are less discriminative for those types of camera
shots. More features are needed to improve the performance. For shots with
less variations, our system works satisfactorily.

Table 7.2 shows the recalls and precisions for detecting the four categories
of highlights. The results are reasonable, especially we are able to detect five
home runs out of the total six. The highlight category of in-diamond play has
the lowest recall and precision values compared to other categories, because
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Table 7.1. Experimental result for camera shot classifications

View Type Precision Recall

Pitch View 0.90 0.89

Catch Overview 0.81 0.76

Running Overview 0.83 0.81

Audience View 0.75 0.71

Running Closeup 0.65 0.51

Touch Base Closeup 0.44 0.53

this category has the most complex temporal structures and the largest vari-
ations in view transition patterns. Through these evaluation results, we have
demonstrated that HMM-based classifiers are capable of detecting complex
baseball highlights.

Table 7.2. Experimental result for highlight classifications

Highlight Type Precision Recall

Home Run 0.83 0.71

Catch 0.75 0.68

Hit 0.83 0.66

In-diamond Play 0.67 0.40

Problems

7.1. Consider a HMM model with two states, s1, s2, and two outputs, o1, o2.
The state transition probability table is

s1 s2

s1 0.8 0.2
s2 0.3 0.7

The output probability table is
s1 s2

o1 0.9 0.1
o2 0.1 0.9

Calculate the probability of observing outputs o1 and o2, respectively, if the
model has been running for long enough time.
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7.2. Same HMM model as problem 7.1. Assume that, after the model has
been running for long enough time, we observed output o1

(a) What is the probability that the model is at state s1?
(b) What is the probability that the model is at state s1 at the previous

time step.

7.3. For any probability distribution P (x, y) and Q(x, y), prove the following
inequality

log P (y) ≥
∑

x

Q(x|y) log P (x, y) −
∑

x

Q(x|y) log Q(x|y) .

Give the condition when the equality holds.

7.4. This chapter derives the HMM training algorithm based on the EM al-
gorithm. An alternative way is to use gradient-based algorithms such as con-
jugate gradient method to directly maximize the log-likelihood

L(λ) =
∑

i

log P (y(i)
1 , y

(i)
2 , . . . , y(i)

n |λ) ,

where y
(i)
1 , y

(i)
2 , . . . , y

(i)
n is the i’th observed sequence of the HMM. Derive the

equations for calculating the gradients of the log-likelihood L(λ) with respect
to the parameters λ of HMM. Here the initial state distribution πi, transition
probabilities pij and output probabilities qsy are parameterized as

πi =
exp(γi)∑
i exp(γi)

(7.51)

pij =
exp(αij)∑
j exp(αij)

(7.52)

qsy =
exp(βsy)∑
y exp(βsy)

(7.53)

7.5. Consider the following probabilistic cluster model for data vector x ∈ Rd

and its cluster membership c ∈ {1, · · · ,K}.

p(µi) ∼ N(0, I) (7.54)

p(π1, · · · , πK) ∼ Dirichlet(α1, · · · , αK) (7.55)

p(c) ∼ Multinomial(π1, π2, · · · , πK) (7.56)

p(x|c = i, µi) ∼ N(µi, I) (7.57)

Given a set of data samples D = {x1, · · · ,xN}, derive the EM algorithm for
finding the maximum a posterior estimation of πi and µi.
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7.6. In the HMM described in this chapter, the output is discrete variable.
Consider the case where output y is a multidimensional continuous variable
with a Gaussian distribution whose mean and variance are determined by the
current state s

P (y|s) ∼ N(µs, Σs) (7.58)

Derive the equations for estimating µs and Σs

7.7. In the HMM described in this chapter, observations are generated for
all time steps. If we only observe the outputs yt1 , · · · , ytk

at the time steps
t1, · · · , tk. Modify the forward algorithm to calculate P (y|λ)

7.8. Consider the following dynamic model for {Yt}0≤t≤T

Xt = aXt−1 + ut ,

Yt = bXt + vt ,

where X0 ∼ N(0, 1), ut ∼ N(0, q), vt ∼ N(0, r), and
{X0, u1 · · ·uT , v1, · · · , vT } are mutually independent.

(a) Show that this is a hidden Markove model. Identify the initial distri-
bution, transition distribution and output distribution.

(b) Suppose both X and Y are one dimensional. Derive a closed form
formula for P (Xt|Y1, · · · , Yt) using the forward-backward algorithm.

7.9. For proving the Baum-Welch algorithm in Sect. 7.6.2, we computed the
maximum of the function φ(λ) defined by (7.37) with respect to P = {pij}.
Compute the maximum of φ(λ) with respect to π = {πi} and Q = {qsy}.



8

Inference and Learning for General Graphical

Models

In previous chapters, we described several probabilistic models that capture
certain structures of the given data. In this chapter, we will see that these
models are all under a general umbrella called probabilistic graphical models.

8.1 Introduction

A graphical model can be understood as a probability distribution of a set of
random variables that factorizes according to the structure of a given graph.
Formally speaking, let G = (V,E) be a graph of a set of vertices V and edges
E. Each vertex v ∈ V is associated with a random variable xv. Depending on
wether G is directed on not, we have directed graphical model or undirected
graphical model.

Directed graphical models: Also known as Bayesian networks. G must
be a directed acyclic graph (DAG). For each node v ∈ V , there is a set π(v)
of all the parent nodes of v. Then the probability distribution is factorized as

P (x) =
∑

v∈G

P (xv|xπ(v)) .

Figure 8.1 is a simple example of directed graphical model. In this example,
we have

P (B,E,A,C) = P (B)P (E)P (A|B,E)P (C|A) (8.1)

The hidden Markov model we studied in Chap. 7 also belongs to the class of
directed graphical models.

Undirected graphical models: The undirected graphical model is an-
other name of Markov random field. The probability distribution is factorized
as a set of functions ψC(xC) defined over each clique C of the graph G:
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Burglary Earthquake

Alarm

Call

P(B)

0.002

P(E)

0.001

B E P(A|B,E)
F F 0.95
F T 0.29
T F 0.94
T T 0.001

A P(C|A)
F 0.01
T 0.70

Fig. 8.1. A simple directed graphical model. Your home has a burglary alarm.

The probability of the alarm being activated is directly affected by the burglary

and earthquake sensors. In the event of the alarm being activated, the neighbor will

notify you by phone, and of course there are some chances that your neighbor makes

mistakes

P (x) =
1
Z

∏

C

ψC(xC)

In order to present the algorithms for directed and undirected graphical
models in a unified framework, we will introduce factor graphs first [64].

Definition 8.1. A factor graph is a bipartite graph that expresses the struc-
ture of the factorization of a function g of a set of variables {x1, · · · , xn}. A
factor graph has one variable node for each variable xi, and one factor node
for each local function fj, and an edge-connecting variable node xi to factor
node fj if and only if xi is an argument of fj. Let xj be the set of variable
nodes connecting to the factor node fj, then g is

g(x1, · · · , xn) =
∏

j

fj(xj)

If g is a positive function, a probability distribution of x can be obtained
from the normalized version of g

P (x) =
1
Z

g(x) =
1
Z

J∏

j=1

fj(xj) (8.2)
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where the normalization constant Z is defined by

Z =
∑

x

g(x) (8.3)

Both the directed and undirected graphical model can be easily repre-
sented using factor graphs. For directed graphical model, each conditional
distribution function P (xv|xπ(v)) corresponds to one factor node fv and the
arguments of fv are xv and xπ(v). For example, Fig. 8.2 is the equivalent factor
graph of the directed graphical model in Fig. 8.1, where f1(x1) = P (B = x1),
f2(x2) = P (E = x2), f3(x1, x2, x3) = P (A = x3|B = x1, E = x2), and
f4(x3, x4) = P (C = x4|A = x3).

x1 x2

x3

x4

f1 f2

f3

f4

Fig. 8.2. The factor graph corresponding to Fig. 8.1

To convert an undirected graphical model UG to factor graph, each node
in UG is mapped to one variable node in the factor graph, each clique function
ψC is mapped to a factor node fC and there is an edge connecting xi and fC

if and only if xi is in clique C in UG.
The marginal function gA for a subset xA = {xi|i ∈ A} of variables is

defined as
gA(xA) =

∑

{xi|i/∈A}
g(x) (8.4)

Here we note that for continuous variable, the sum is understood as integration
and we will use sum instead of integration through out the derivations in this
chapter.
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Two major tasks in the application of graphical models are: (1) inference,
and (2) learning. In the inference task, the parameters of the model are known,
and the goal is to find out certain property of a set of variables xA given
the observation of another set xA of variables. Typically, this requires the
calculation of the conditional probability P (xA|xB). It is clear that

P (xA|xB) =
gA∪B(xA,xB)

gB(xB)
(8.5)

For the learning task, a data set D = {x(1)
A1

, · · ·x(n)
An

} of observed samples
are given. The task is to estimate the parameters θ of the model so that
the likelihood Pθ(D) is maximized. We note that from the Bayesian point of
view, learning is a special case of inference because the model parameter θ and
data are jointly modelled and the task of learning is to infer the conditional
distribution P (θ|D).

From the above discussion we know that it is important to compute the
marginal functions. But in general, this is an untractable task. Suppose that
there are n variables, each of which has k different values. Then to calculate
the sum in (8.4), we need to enumerate all different combinations of x1, · · · , xn.
The number of different combinations is kn. Hence the computation cost grows
exponentially with the total number of variables. However, for certain factor
graphs, the marginal functions can be efficiently computed by exploring the
structure of the graph.

8.2 Sum-product algorithm

In this section, we will focus on tree-structured factor graphs, i.e., there is no
cycles in the graph. The whole idea is very similar to the forward-backward
algorithm presented for the hidden Markov model. In fact, the sum-product
algorithm is a generalization of the forward-backward algorithm for tree-
structured graphical models.

The idea is the divide and conquer of dynamic programming. We first use
Fig. 8.3 to illustrate the idea. Consider the following decomposition of gi(xi),

gi(xi) =
∑

xj ,xk,xl,xm

fu(xj)fv(xk)fr(xj , xk, xi)fs(xi, xl)ft(xi, xm) (8.6)

=
∑

xj ,xk

fu(xj)fv(xk)fr(xj , xk, xi)
∑

xl

fs(xi, xl)
∑

xm

ft(xi, xm) . (8.7)
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With this decomposition, the big sum involving summing over the four vari-
ables in (8.6) is avoided. Instead, we only need to calculate several smaller
sums that involve less variables in (8.7). We can compare the computation
cost of (8.6) and (8.7). In (8.6), there are |X|4 different combinations of
xj , xk, xl, xm and we need to calculate the sum for each different xi, so the cost
is O(|X|5). In (8.7), the cost is O(|X|3), which is a huge save from O(|X|5).
This difference is even dramatic when there are more variables in the model.

We define the set of variables xr that rth factor depends on, by N (r). For
the example in Fig. 8.2, N (1) = {1, 3}, N (2) = {2, 3}, N (3) = {3, 4}, and
N (4) = {4}. Similarly, M(i) is defined as the set of factors in which variable
i participates. In Fig. 8.2, M(1) = {1, 3}, M(2) = {2, 3}, M(3) = {3, 4},
M(4) = {4}. Since the graph is a tree, for any two connected nodes r and i,
we can define a subtree Ti→r to be the subgraph that can be reached from r by
paths that do not pass through i. We also denotes x\i as the set of variables
in x with variable xi excluded.

xj xk

xi

xl

fu
fv

fr

fs ft

xm

riT 

siT tiT 

Fig. 8.3. Divide and conquer

Consider the calculation of gi(xi) in a factor graph in Fig. 8.3. By defini-
tion,

gi(xi) =
∑

x\i

g(x) =
∑

x\i

J∏

j=1

fj(xj) . (8.8)
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The critical observation here is that xi separates the tree into three parts
Ti→r, Ti→s and Ti→t, where we can calculate the sums independently within
each part. This is formally described by the following equation:

gi(xi) =
∑

x\i

∏

r∈M(i)

∏

fs∈Ti→r

fs(xs) (8.9)

=
∏

r∈M(i)

∑

{xj∈Ti→r}

∏

fs∈Ti→r

fs(xs) . (8.10)

We define mr→i to be

mr→i(xi) =
∑

{xj∈Ti→r}

∏

fs∈Ti→r

fs(xs) . (8.11)

Hence
gi(xi) =

∏

r∈M(i)

mr→i(xi) . (8.12)

Now let us see how to calculate mr→i(xi). Similar to the calculation of
gi(xi), mr→i(xi) can be factorized into several parts by observing that fr

separates Ti→r into two parts Tr→j and Tr→k:

mr→i(xi) =
∑

{xj∈Ti→r}
f(xr)

∏

j∈N (r)\i

∏

fs∈Tr→j

fs(xs) (8.13)

=
∑

xr\i

f(xr)
∏

j∈N (r)\i

∑

{xk∈Tr→j\xj}

∏

fs∈Tr→j

fs(xs) . (8.14)

We define Mj→r to be

Mj→r(xj) =
∑

{xk∈Tr→j\xj}

∏

fs∈Tr→j

fs(xs) . (8.15)

Then
mr→i(xi) =

∑

xr\i

f(xr)
∏

j∈N (r)\i

Mj→r(xj) . (8.16)

Mi→r(xi) can also be decomposed using ms→i(xi)

Mi→r(xi) =
∑

{xj∈Tr→i\xi}

∏

s∈M(i)\r

∏

fu∈Ti→s

fu(xu) (8.17)

=
∏

s∈M(i)\r

∑

{xj∈Ti→s}

∏

fu∈Ti→s

fu(xu) (8.18)

=
∏

s∈M(i)\r

ms→i(xi) . (8.19)
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Thus the desired result can be obtained by passing two types of messages
along the edges of the graph: messages mr→i from factors to variables, and
messages Mi→r from variables to factors. The calculation of these two types
of messages are summarized as the following two equations:

From factor to variable:

mr→i(xi) =
∑

xr\i

f(xr)
∏

j∈N (r)\i

Mj→r(xj) , (8.20)

From variable to factor:

Mi→r(xi) =
∏

s∈M(i)\r

ms→i(xi) . (8.21)

In the following, we give a step-by-step detailed example for calculating
the messages for the graphical model in Fig. 8.3
Step 1

mu→j(xj) = fu(xj) ,

mv→k(xk) = fv(xk) ,

Ml→s(xl) = 1 ,

Mm→t(xm) = 1 .

Step 2
Mj→r(xj) = mu→j(xj) ,

Mk→r(xk) = mv→k(xk) ,

ms→i(xi) =
∑

xl

fs(xi, xl)Ml→s(xl) ,

mt→i(xi) =
∑

xm

ft(xi, xm)Mm→t(xm) .

Step 3
mr→i(xi) =

∑

xj ,xk

fr(xi, xj , xk)Mj→r(xj)Mk→r(xk) ,

Mi→r(xi) = ms→i(xi)mt→i(xi) .

Step 4
mr→j(xj) =

∑

xi,xk

fr(xi, xj , xk)Mk→r(xk)Mi→r(xi) ,

mr→k(xk) =
∑

xi,xj

fr(xi, xj , xk)Mj→r(xj)Mi→r(xi) ,

Mi→s(xi) = mr→i(xi)mt→i(xi) ,
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Mi→t(xi) = mr→i(xi)ms→i(xi) .

Step 5
Mj→u(xj) = mr→j(xj) ,

Mk→v(xk) = mr→k(xk) ,

ms→l(xl) =
∑

xi

f(xi, xl)Mi→s(xi) ,

mt→m(xm) =
∑

xi

f(xi, xm)Mi→t(xi) .

Now all the messages have been obtained and we can read out result:

gj(xj) = mu→j(xj)mr→j(xj) ,

gk(xk) = mv→k(xk)mr→k(xk) ,

gi(xi) = mr→i(xi)ms→i(xi)mt→i(xi) ,

gl(xl) = ms→l(xl) ,

gm(xm) = mt→m(xm) .

Message passing with normalization: For probabilistic graphical mod-
els, we may only need the normalized marginal functions gi(xi)∑

xi
gi(xi)

. In this

case, we can modify message passing rule (8.21) to calculate normalized mes-
sages as:

Mi→r(xi) = αir

∏

s∈M(i)\r

ms→i(xi) , (8.22)

where αir is the quantity such that
∑

xi
Mi→r(xi) = 1. The use of normalized

messages has two advantages: first, it prevents overflow or underflow during
computation; second, the message itself now can be interpreted as probabili-
ties.

Given the message update rule (8.20) and (8.21), we also need to decide
which message to update first, which second. Fortunately, for a graph with tree
structure, the update sequence can be easily determined with the following
message passing method.

Message passing method 1: For all the leaf variable nodes i, set
Mi→r(xi) = 1. For all the leaf factor nodes r, set mr→i(xi) = fr(xi). Then a
message is created according to (8.20) and (8.21) only if all the messages on
which it depends are present.

Message passing method 2: Initialize all messages from variables to 1.
Then alternate between message update rule (8.20) and (8.20). After a number
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of iterations equals the diameter of the graph, the algorithm will converge to
the correct result.

It is clear that the message passing method 2 requires much more compu-
tation cost than method 1. The reason is that, if the graph is not a tree, then
method 1 cannot be applied, because some messages may never be updated
due to the fact that some of the messages it depends on will never be avail-
able. However, we can always apply method 2 to any graph, though it may
not converge to the exact result.

When the graph is not a tree, it is possible to convert it into a
model without loop. For example, the factor graph in Fig. 8.4(a) can
be converted to the factor graph model in 8.4(b), where f(x1, x2, x3) =
f2(x1, x2)f3(x1, x3)f4(x2, x3).

x1 x2

x3

x4

f1

f2

f3
f4

x1 x2

x3

x4

f1

f

(a) (b)

Fig. 8.4. (a) A factor graph with loop. (b) An equivalent factor graph without

loop

There is a general strategy called junction tree algorithm [65, 66] that can
convert a graphical model with loops to an equivalent tree-structured graph-
ical model. However, this algorithm is of little use when the original graph
structure is complex. For general graphs, after the conversion, the number
of variables involved in one factor is in the same order of the total number
of variables in the graph. Hence the computation cost at each step in the
sum-product algorithm will increase exponentially with the size of the graph.
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8.3 Max-product algorithm

The sum-product algorithm efficiently solves the problem of marginalization.
Another common task for graphical model is to find the most probable config-
uration x∗ that maximizes the probability P (x∗|xA) given some observation
xA. We define g∗A(xA) as:

g∗A(xA) = max
{xi|i/∈A}

g(x) . (8.23)

The definition of g∗A looks very similar to that of the marginal function gA

in (8.4). The only difference is the replacement of the
∑

operator with the
max operator. Both of these two operators have the following properties of an
operation

∨
: ∨

x1

∨

x2

f(x1, x2) =
∨

x2

∨

x1

f(x1, x2) , (8.24)

∨

x

af(x) = a
∨

x

f(x) . (8.25)

The first property allows us to simply use
∨

x1,x2
to represent

∨
x1

∨
x2

. The
second property is called the distributive law. Following is an example that
shows how these two properties can be used to simplify calculation:

∨

x1

∨

x2

(f1(x1)f2(x2)) =
∨

x1

(
f1(x1)

∨

x2

f2(x2)

)
=

(
∨

x1

(f1(x1)

)(
∨

x2

f2(x2)

)
.

(8.26)
A close examination of the sum-product algorithm reveals that only the above
two properties of

∑
are necessary for the derivation of the algorithm. Hence

if we replace the
∑

operator with the max operator, same procedure can be
used to calculate g∗A(xA):

From factors to variables:

m∗
r→i(xi) = max

xr\i
f(xr)

∏

j∈N (r)\i

M∗
j→r(xj) . (8.27)

From variables to factors:

M∗
i→r(xi) =

∏

s∈M(i)\r

m∗
s→i(xi) . (8.28)

And g∗i (xi) can be obtained using the following equation:

g∗i (xi) =
∏

r∈M(i)

m∗
r→i(xi) . (8.29)
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The new algorithm is called max-product algorithm. In practice, the prod-
uct is often carried out as sum in the logarithm domain, hence the algorithm is
also called max-sum algorithm. Comparing to the Viterbi algorithm in Chap.
7, we can see that the max-product algorithm is the generalization of the
Viterbi algorithm for tree-structured graphical models.

8.4 Approximate inference

The sum-product algorithm in section 8.2 is based on the assumption that
the graph has a tree structure. But in many real applications, the graphical
structure can not be simply described using a tree. It is a known fact that
the exact inference for graphical models with arbitrary structures is an NP
complete problem. Even for the tree structured models, the integration (note
that sum is interpreted as integration for continuous variables) may be too
complex to be calculated in closed form. So we have to use approximate meth-
ods in order to get a desired result within a reasonable amount of time. There
are many approximate methods. We will briefly discuss several of them in this
section.

The first method for approximate inference is to use Monte Carlo meth-
ods. As long as we can generate a set of independent random samples
{x(1), · · · ,x(N)} from a given graphical model, then the inference can be done
by calculating the average value of certain function over those samples. For
example, P (xi = c) can be evaluated by

P (xi = c) ≈ 1
N

N∑

n=1

δc(x(n)) , (8.30)

where function δc(x) is equal to 1 if the i-th variable of x is equal to c, and is
equal to 0 otherwise. In order to generate a random sample from the graphical
model, we can use Gibbs sampling. Using the notation in section 8.2, we can
see that xi is conditionally independent of other variables given the values of
the variables in the set L(i) =

⋃
r∈M(i) N (r)\i. Hence one Gibbs sampling

step can be achieved by sampling from following distribution:

P (xi|x\i) ∝
∏

r∈M(i)

fr(xr) . (8.31)

The second approximation method is based on variational methods. Vari-
ational methods in this context refer to the methods for approximating a
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complex distribution P (x) by a simpler one Qθ(x) which is parameterized by
adjustable parameters θ. The parameter θ is adjusted so that Qθ is the best
approximation to P in some sense. We will use the mean field approximation
to illustrate this idea. In the mean field approximation, we use a fully fac-
tored distribution Qθ(x) =

∏
Qi(xi; θi) to approximate P . The quality of the

approximation is measured using the KL divergence between Q and P :

KL(Q||P ) =
∑

x

Qθ(x) log
Qθ(x)
P (x)

. (8.32)

Consider a distribution for binary valued vector x:

P (x) =
1
Z

exp(−φ(x)) , (8.33)

the KL-divergence between Q and P is:

KL(Q||P ) =
∑

x

Qθ(x) log
Qθ(x)

exp(−φ(x))/Z
(8.34)

=
∑

x

Qθ(x)φ(x) +
∑

x

Qθ(x) log Qθ(x) + log Z (8.35)

= EQ(φ(x)) − HQ + log Z , (8.36)

where EQ(φ(x)) is the average of energy function under distribution Q and
HQ is the entropy of distribution Q.

Consider a distribution for binary valued vector x ∈ {−1, 1}d where the
energy function is

φ(x) = −1
2
xT Wx − xT b . (8.37)

Since each Qi is a distribution for a binary variable xi, we only need one
parameter θi to define Qi. Qi(1; θi) = 1+θi

2 and Qi(−1; θi) = 1−θi

2 . Hence

Qi(xi; θi) =
1 + xiθi

2
. (8.38)

So the entire approximation distribution Qθ is:

Qθ(x) =
∏

i

1 + xiθi

2
. (8.39)

EQ(φ(x)) and HQ in (8.36) can be calculated as:

EQ(φ(x)) = −1
2

∑

ij

∑

xi,xj

WijxixjQi(xi; θi)Qj(xj ; θj) (8.40)
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−
∑

i

∑

xi

xibiQi(xi; θi) (8.41)

= −1
2

∑

ij

Wijθiθj −
∑

i

biθi , (8.42)

HQ = −
∑

i

∑

xi

1 + xiθi

2
log

1 + xiθi

2
(8.43)

= −
∑

i

(
1 + θi

2
log

1 + θi

2
+

1 − θi

2
log

1 − θi

2

)
. (8.44)

Taking the derivative of KL(Q||P ) with respect to θ, we obtain the fixed
point condition for the optimal θ:

1
2

log
1 + θi

1 − θi
=

∑

j

Wijθj + biθi . (8.45)

The third approximation method is to apply the sum-product algorithm.
Although sum-product algorithm is derived for tree structured graphical mod-
els, one of the most surprising use of the sum-product algorithm is to apply
it to graphical models with loops. To apply sum-product algorithm to graph
with loops, we use the normalized messages as in (8.22) and message passing
method 2. Once the messages converge (if they do) after some iterations, we
can use the messages to calculate the desired probabilities as we do for tree-
structured models. Although sounding a quite heuristic approach, this way of
using the sum-product algorithm is really supported by theory. In fact, the
converged messages are the solution to a particular variation approximation
called Bethe/Kickuchi to the original distribution [67].

8.5 Learning

Suppose that the model has parameter θ and we have a training data set D =
{D1, · · · ,DN}, where each case Dn consists of an assignment of values to some
subset of variables in the graphical model, the learning task concerns about
making a prediction of an unknown quantity x. In full Bayesian learning, the
prediction of x is given by the following equation

P (x|D) =
∫

θ

P (x|θ)P (θ|D) .

Thus the learning requires the computation of P (θ|D). In most practical prob-
lems, it is too difficult to calculate P (θ|D), and the maximum a posteriori
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(MAP) solution θMAP = arg maxθ P (θ|D) is used instead of the full posterior
distribution. The prediction based on the MAP solution is P (x|θMAP ). By
Bayes rule

P (θ|D) ∝ P (D|θ)P (θ) ,

where P (θ) is the prior distribution of θ. Hence

θMAP = arg max
θ

P (θ|D) = arg max
θ

P (D|θ)P (θ) .

For many models, it is still not possible to obtain the closed form solu-
tion for the MAP solution. Hence learning using general purpose nonlinear
optimization methods is most widely applied to different models. For many
nonlinear optimization methods, gradient is required, so we will spend some
efforts to study how to calculate the gradient of the log-likelihood with respect
to the parameters

L = log P (D|θ)P (θ) = log P (θ) +
∑

n log P (Dn|θ) .

The gradient ∂L
∂θ :

∂L

∂θ
=

∂ log P (θ)
∂θ

+
∑

n

∂ log P (Dn|θ)
∂θ

.

Suppose that for the training case Dn, xA are the observed variables and xĀ

are the unobserved variables, then

∂ log P (Dn|θ)
∂θ

=
∂ log P (xA)

∂θ
=

∂

∂θ
log

(
gA(xA)

Z

)

=
∂

∂θ
(log gA(xA)) − ∂ log Z

∂θ
.

The first term in the last equality of the above equation is:

∂

∂θ
(log gA(xA))

=
∂

∂θ
(log

∑

xĀ

g(x))

=
1

gA(xA)
∂

∂θ
(
∑

xĀ

g(x))



8.5 Learning 193

=
1

gA(xA)

∑

xĀ

g(x)
∂ log g(x)

∂θ

=
∑

xĀ

P (x|xA)
∂ log g(x)

∂θ

=
∑

i

∑

xĀ

P (x|xA)
∂ log gi(xi)

∂θ

=
∑

i

∑

xi\A

P (xi|xA)
∂ log gi(xi)

∂θ
.

The second term, for directed graphical models, since Z = 1, ∂ log Z
∂θ = 0. For

undirected graphical models:

∂ log Z

∂θ
=

1
Z

∂Z

∂θ

=
1
Z

∂

∂θ

∑

x

g(x)

=
1
Z

∑

x

g(x)
∂ log g(x)

∂θ

=
∑

x

P (x)
∂ log g(x)

∂θ

=
∑

x

P (x)
∑

i

∂ log g(xi)
∂θ

=
∑

i

∑

xi

P (xi)
∂ log g(xi)

∂θ
.

Hence for directed graphical models

∂ log P (xA)
∂θ

= E

(
∂ log g(x)

∂θ
|xA

)
.

For undirected graphical models

∂ log P (xA)
∂θ

= E

(
∂ log g(x)

∂θ
|xA

)
− E

(
∂ log g(x)

∂θ

)
. (8.46)

Let us have a close look at the gradient. The first term is the expectation
of ∂ log g(x)

∂θ conditioned on the observed variables xA. The second term is the
expectation of ∂ log g(x)

∂θ without any condition.
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There are several methods to calculate these expectations. The first
method requires the computation of P (xi|xA) and P (xi). As shown in the
previous sections, these values can be efficiently calculated if the graphical
model is tree-structured. Otherwise, approximate methods such as those de-
scribed in section 8.4 need to be applied to calculate them. The second method
is based on the Monte Carlo estimation of the expectation. The key is to gen-
erate random samples from the distributions P (x|xA) and P (x). The MCMC
sampling methods in previous chapters can be used to generate these samples.

Once we are able to obtain the gradient, we can apply existing optimization
algorithms to find the best solution. Stochastic gradient descent, conjugate
gradient, and quasi-Newton method are some of the most popular optimiza-
tion algorithms used for this problem. Sometimes the gradient is so simple,
we can also find the solution analytically.

Example: Directed graphical models with completely observed data. Sup-
pose that the parameter for each factor gi is θi and the prior distribution for
θi is P (θi). Then,

∂ log P (x|θ)
∂θi

=
∂ log gi(xi)

∂θi
.

The maximum a posteriori solution can be simply found by solving the fol-
lowing equations for θi

∂ log P (θi)
∂θi

+
∑

n

∂ log gi(x
(n)
i )

∂θi
= 0 .

Example: Conditional a random field with a chain structure. Conditional
random field (CRF) of y given x is a probabilistic model that uses a Markov
random field, whose parameters depend on x, to model the conditional distri-
bution P (y|x). CRF takes the following form:

P (y|x) =
1

Z(x)
exp

(
∑

i

φi(yi,x)

)
. (8.47)

Figure 8.5 shows a conditional random field model with chain structure.
In this model, there are two types of potential functions: fλ(yi, yi+1, i,x) for
the edges between adjacent y’s, and gµ(yi, i,x) for the single y’s, where λ and
µ are the parameters. The training data for CRF is a set {x(t),y(t)} of paired
x and y. For this model, using (8.46), we get the gradient for λ and µ as
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x1
...

...y1

xnx2

ymy3y2

x3

Fig. 8.5. A chain-structured conditional random field model

∂ log P (y|x)
∂λ

=
∑

i

∂fλ(yi, yi+1, i,x)
∂λ

−
∑

i

∑

yi,yi+1

P (yi, yi+1|x)
∂fλ(yi, yi+1, i,x)

∂λ
,

(8.48)
∂ log P (y|x)

∂λ
=

∑

i

∂gµ(yi, i,x)
∂µ

−
∑

i

∑

yi

P (yi|x)
∂gµ(yi, i,x)

∂µ
. (8.49)

The conditional marginal probability P (yi|x) and P (yi, yi+1|x) can be calcu-
lated efficiently using the sum-product algorithm described in Sect. 8.2 be-
cause of the simple chain structure.

Example: Restricted Boltzmann machines. A restricted Boltzmann ma-
chine is an MRF with bipartite graph structure (Fig. (8.6)).

x1
...

...y1

xnx2

ymy3y2

Fig. 8.6. Restricted Boltzmann machine

The energy function is:

E = −
∑

ij

xiwijyj −
∑

i

aixi −
∑

j

bjyj = −xT Wy − aT x − bT y . (8.50)
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In the training data, x is observed and y is hidden. The first term in (8.46)
can be easily calculated because y1 · · · ym are conditionally independent given
x:

P (yj |x) =
exp(yj(bj +

∑
i xiWij))∑

y exp(y(bj +
∑

i xiWij))
.

However, exact evaluation of the second term in (8.46) is prohibitive because
the exponential number of terms need to be summed. Because both P (y|x)
and P (x|y) can be sampled efficiently, a practical way to evaluation the ex-
pectation is to use Gibbs sampling to calculate the expectation in the second
term.

Problems

8.1. Draw a directed graphical model corresponding to the cluster model for
3 data points in problem 7.5

8.2. For the model in Fig. 8.1
(a) Calculate the probability of a burglary event given that you received

a call.
(b) Suppose that in addition to receiving a call, you also found out that

there was an earthquake. Calculate the probability of a burglary event.

8.3. (a) Draw the factor graph for the following function

g(x1, x2, x3, x4, x5, x6) = f1(x1, x2)f2(x2, x3)f3(x3, x4, x5)f4(x5, x6)f5(x6)
(8.51)

(b) The values of the functions f1 · · · f5 are listed in the following tables.

x1 x2 f1

0 0 2
0 1 1
1 0 1
1 1 3

x2 x3 f2

0 0 2
0 1 1
1 0 1
1 1 2

x3 x4 x5 f3

0 0 0 2
0 0 1 1
0 1 0 1
0 1 1 2
1 0 0 1
1 0 1 2
1 1 0 2
1 1 1 1

x5 x6 f4

0 0 1
0 1 2
1 0 2
1 1 3

x6 f4

0 3
1 2

Use the sum-product algorithm to calculate the marginal function g(x2).
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8.4. Use the max-product algorithm to find the maximal values of g in Prob-
lem 8.3 and the corresponding values of x1, · · · , x6.

8.5. Describe how to calculate more complex marginal functions such as
Z1,2(x1, x2) using the messages computed by the sum-product algorithm. Fo-
cusing the cases where x1 and x2 are connected to a common factor node.

8.6. Consider a Gaussian Markov random field with energy function

E(x) =
1
2

∑

i,j

xiAijxj +
∑

i

xibi , (8.52)

where x is a continuous state variable and A is a positive definite matrix. If
the none zero elements of A correspond to a tree, the sum-product algorithm
can be used to evaluate the marginal distribution of each variable. Derive the
message passing equations for this model.

8.7. Consider an undirected graphical model

p(x) =
1
Z

T∏

t=1

f(xt−1, xt) , (8.53)

where xt ∈ {1, · · · ,M}. Show that this model can be converted to a directed
graphical model

p(x) = p0(x0)
T∏

t=1

p(xt|xt−1) . (8.54)

Derive the formulas to calculate p0(x0) and p(xt|xt−1).

8.8. Consider a distribution P (x = i, y = i) = pi and P (x = i, y = j) = 0 for
i �= j. Suppose that we use a factorized distribution Q(x, y) = Qx(x)Qy(y) to
approximate P .

(a) For the approximation criterion KL(P ||Q), find the best Q.
(b) For the approximation criterion KL(Q||P ), find the best Q.

8.9. For the cluster model 7.5, use the mean field method described in Sect.
8.4 to find the posterior distribution P (µi|D) and P (π1, · · · , πK |D). Compare
with the solution found by the EM algorithm. (Hint: use distribution of the
form Qπ(π)

∏K
k=1 Qµk

(µk)
∏N

n=1 Qcn
(cn) to approximate P (π, µ, c|D)).
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Discriminative Graphical Models



9

Maximum Entropy Model and Conditional

Random Field

In Part II of this book, we described typical generative graphical models
that attempt to model the probability P (x|k) of generating the observation x

given the class k. Generative models have been traditionally popular for data
classification tasks because modeling P (x|k) is often easier than modeling
P (k|x), and there exist well-established, easy-to-implement algorithms such as
the EM and the Baum-Welch algorithms (see Chap. 7) to efficiently estimate
the model through a learning process. The ease of use, and the theoretical
beauty of generative models, however, do come with a cost. Many complex
events, such as baseball highlights described in the case study in Chap. 7,
need to be represented by a vector x of many features that depend on each
other. To make the model estimation process tractable, generative models
commonly assume conditional independence among all the features comprising
the feature vector x. Because this assumption is for the sake of mathematical
convenience rather than the reflection of a reality, generative models often
have limited performance accuracies for classifying complex data sets.

In Part III, we will present discriminative models that are particularly
powerful and effective for modeling multimedia data. Discriminative models
strive to learn P (k|x) directly from a training set without the attempt to
model the observation x. They typically make very few assumptions about
the data and the features, and in a sense, let the data speak for themselves.
Recent research studies have shown that discriminative models outperform
generative models in many applications such as natural language processing,
web page classifications, baseball highlight detections, etc.

In this chapter, we will describe a statistical model that conforms to the
maximum entropy principle (we will call it the maximum entropy model, or
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ME model in short) [68, 69]. Through mathematical derivations, we will show
that the maximum entropy model is a kind of exponential model, and is a close
sibling of the Gibbs distribution described in Chap. 6. An essential difference
between the two models is that the former is a discriminative model, while
the latter is a generative model. Through a model complexity analysis, we will
show why discriminative models are generally superior to generative models in
terms of data modeling power. We will also describe the Conditional Random
Field (CRF), one of the latest discriminative models in the literature, and
prove that CRF is equivalent to the maximum entropy model. At the end of
this chapter, we will provide a case study where the ME model is applied to
baseball highlight detections, and is compared with the HMM model described
in Chap. 7.

9.1 Overview of Maximum Entropy Model

The principle of the maximum entropy model is simple: model all that is
known and assume nothing about what is unknown. In other words, given a
collection of facts, the maximum entropy method chooses a model which is
consistent with all the facts, but otherwise is as uniform as possible.

The maximum entropy principle can be illustrated using a simple example.
Assume that we wish to construct a baseball highlight detector able to detect
the following five types of highlights from TV broadcasted baseball videos:
home run (HR), infield hit (IH), infield out (IO), outfield hit (OH), and
outfield out (OO). Our baseball highlight detector assigns to each video scene1

s having the feature vector x a probability P (y|x) that s contains highlight y,
where y ∈ {HR, IH, IO,OH,OO,OT}, and OT represents any other events.
For developing the model P (Y |X)2, we collect a large sample of baseball videos
to learn what features/facts are useful for highlight detections. Suppose that
one statistic we have discovered from the sample is that the above five types
of highlights constitute 80% of all baseball events after a batter hits the ball
(the remaining 20% goes to the OT category). With this information in hand,
we can impose the first constraint on our model P (Y |X):

1 Here a video scene is defined as one or more video shots which contains a complete

baseball event.
2 Remind that in this book, we use uppercase letters to represent random variables,

and use lowercase letters to denote observed values of random variables



9.1 Overview of Maximum Entropy Model 203

P (HR|BT ) + P (IH|BT ) + P (IO|BT ) + P (OH|BT ) + P (OO|BT ) = 0.8 ,

(9.1)
where BT denotes the observation (the feature) that a batter hits the ball.

There are an infinite number of models P (Y |X) that satisfy the above
constraint. One such model is P (HR|BT ) = 0.8. In other words, the model
always predicts a home run event after observing a batting of the ball. Another
model that obeys the above constraint predicts HR and OO with the probabil-
ities of 0.5 and 0.3 respectively, that is, P (HR|BT ) = 0.5, P (OO|BT ) = 0.3.
However, both of these models are not correct because they do not agree with
our common sense about baseball games. The key problem with these two
models is that they assume more than we actually know about the statistics
of the training sample. All we know at this moment is that the five types of
highlights listed above make up a total of 80% of all baseball events after a
batter hits the ball. Clearly, the above two models are making rather bold
assumptions that can not be justified by the knowledge we have right now.

Based on the above discussions, the most appealing model will be the one
that allocates the total probability evenly among the five types of highlights:

P (HR|BT ) = 0.16, P (IH|BT ) = 0.16, P (IO|BT ) = 0.16,

P (OH|BT ) = 0.16, P (OO|BT ) = 0.16 .

This is the most uniform model subject to our knowledge, and is the one that
is advocated and searched for by the maximum entropy method.

To make our model more accurate in detecting the five types of baseball
highlights, we want to collect more statistics of baseball games. Suppose that,
through a further examination of our sample, we have discovered a second
statistic that the highlights IO and OO occur 70% of the time after a batter
hits the ball. We can apply this knowledge to update our model by requiring
that P (Y |X) satisfy the following constraint as well:

P (IO|BT ) + P (OO|BT ) = 0.7 . (9.2)

Again, there are many models P (Y |X) that obey both of the constraints
(9.1) and (9.2). In the absence of any other knowledge, the maximum entropy
method prefers the model P (Y |X) that allocates its probability as evenly as
possible, subject to the constraints:

P (IO|BT ) = 0.35, P (OO|BT ) = 0.35, P (HR|BT ) = 1/30,

P (IH|BT ) = 1/30, P (OH|BT ) = 1/30 .
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We can once again inspect the sample data to discover new statistics, and
look for the model P (Y |X) that is consistent with all the constraints, and is
as uniform as possible otherwise. As we add more constraints to the model,
the task of finding the model that satisfies the maximum entropy principle
becomes more and more difficult. In the next section, we will formalize what
we have described above using mathematical terms, and will present the max-
imum entropy method that aims to systematically construct the model that
satisfies the maximum entropy principle under a set of constraints.

9.2 Maximum Entropy Framework

To construct a statistical model P (Y |X) that satisfies the maximum entropy
principle in a systematic way, we need to first solve the following three prob-
lems. First, how do we mathematically express those facts/statistics we have
discovered from data samples? Second, how do we construct the model that
is consistent with all the facts, and is as uniform as possible otherwise (we
call such a model the maximum entropy model)? Third, for many real world
problems, it is unlikely that we will obtain an analytic solution for construct-
ing a maximum entropy model. So what is the efficient numeric method for
constructing such a model? In this section, we will present the solutions to
these three problems.

9.2.1 Feature Function

The maximum entropy method solves the first problem by introducing the
feature functions, often binary-valued, and by computing the expected values
of the feature functions with respect to the empirical distributions obtained
from the training sample. For example, we can use the following feature func-
tion to express the fact that the video scene corresponds to a home run event
if the ball flying over the fence is observed

f(X,Y ) =

{
1 if Y = HR and X = ball flying over the fence,
0 otherwise.

(9.3)

Using this feature function, the statistic that a home run event occurs 50% of
the time if the ball flying over the fence has been observed can be expressed
as the expected value of f with respect to the empirical distribution P̃ (X,Y )
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P̃ (f) =
∑

x,y

P̃ (x, y)f(x, y) = 0.5 , (9.4)

where P̃ (x, y) can be obtained by counting the number of times that (x, y)
occurs in the training sample. This way, we can express any statistic of a
training sample as the expected value P̃ (f) of an appropriately defined feature
function f(X,Y ) that represents an important fact/event of the sample.

9.2.2 Maximum Entropy Model Construction

The maximum entropy method constructs the maximum entropy model
Pme(Y |X) by solving an optimization problem under a set of constraints.
Here, the constraints serve to enforce the compliance of the model Pme(Y |X)
with the statistics of the training sample. As described in Sect. 9.2.1, we
define a feature function f(X,Y ) (often binary-valued) for each important
fact/feature of the training sample. The expected value of f with respect to
the model Pme(Y |X) is defined as

Pme(f) =
∑

x,y

P̃ (x)Pme(y|x)f(x, y) , (9.5)

where P̃ (x) is the empirical distribution of x in the training sample. The
maximum entropy method demands that the expected value of f with respect
to the model Pme(Y |X) equal the expected value of f with respect to the
empirical distribution P̃ (X,Y ) (i.e. the statistic of the training sample):

Pme(f) = P̃ (f) . (9.6)

We call (9.6) a constraint equation or simply a constraint. By restricting at-
tention to those models Pme(Y |X) for which (9.6) holds, we are eliminating
from consideration those models that do not comply with the statistics of the
training sample.

Suppose that we have defined n feature functions fi(X,Y ), which deter-
mine the statistics we want our model Pme(Y |X) to comply with. Then, the
set P of models that are the candidates of the maximum entropy model can
be defined as

P = {P (Y |X) |P (fi) = P̃ (fi), i = 1, 2, . . . , n } (9.7)

Now we have a means of representing statistics of a training sample
(namely P̃ (f)), and also a means of requiring that our model comply with
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these statistics (namely Pme(f) = P̃ (f)). The next problem is: How do we
enforce the uniformity of a model subject to the constraints, as requested by
the maximum entropy principle?

A mathematical measure of the uniformity of a conditional distribution
P (Y |X) is provided by the conditional entropy

H(P ) = −
∑

x,y

P̃ (x)P (y|x) log P (y|x) . (9.8)

Using the conditional entropy and the notations we have developed above, we
can mathematically define the model Pme(Y |X) that satisfies the maximum
entropy principle as follows

Pme = arg max
P∈P

H(P ) . (9.9)

This definition is nothing but a mathematical statement of the maximum en-
tropy principle: Be consistent with all the facts (which is expressed by P ∈ P),
but otherwise as uniform as possible (which is expressed by the maximization
of H(P )).

Finding the solution to (9.9) is a typical constrained optimization problem,
which can be generally solved using the Lagrange multiplier technique [26].
We outline the application of the Lagrange multiplier method to problem (9.9)
as follows.

The Lagrange multiplier method first defines a Lagrangian function using
a set of Lagrangian multipliers λi, one for each constraint

L(P,λ) = H(P ) +
n∑

i=1

λi(P (fi) − P̃ (fi)) . (9.10)

Next, fixing λ, we compute the unconstrained maximum of the Lagrangian
function L(P,λ) over all P ∈ P. This can be accomplished by differentiating
L(P,λ) with respect to P , and then setting the differential to zero:

∂L(P,λ)
∂P

= −P̃ (x) log P (y|x) − P̃ (x)P (y|x)
1

P (y|x)
+

n∑

i=1

λiP̃ (x)fi(x, y)

= −P̃ (x) log P (y|x) − P̃ (x) +
n∑

i=1

λiP̃ (x)fi(x, y)

= 0 . (9.11)

Therefore, the P that maximizes the Lagrangian function L(P,λ) (denoted
as Pλ) becomes
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Pλ(y|x) =
1

Zλ(x)
exp

(
−1 +

n∑

i=1

λifi(x, y)

)

=
1

Zλ(x)
exp

(
n∑

i=1

λifi(x, y)

)
, (9.12)

where Zλ(x) is a normalizing constant that ensures
∑

y Pλ(y|x) = 1 for all x:

Zλ(x) =
∑

y

exp

(
n∑

i=1

λifi(x, y)

)
. (9.13)

Note that we obtain the second equality of (9.12) by dividing both the nu-
merator and the denominator by exp(−1).

Let Θ(x, y) =
∑n

i=1 λifi(x, y) . With Pλ, the value of the Lagrangian func-
tion L(P,λ) becomes

L(Pλ,λ) = H(Pλ) +
∑

i

λi(Pλ(fi) − P̃ (fi))

= −
∑

x,y

P̃ (x)
1

Zλ(x)
exp(Θ(x, y)) log

1
Zλ(x)

exp(Θ(x, y))

+
∑

i

λi

(
∑

x,y

P̃ (x)
1

Zλ(x)
exp(Θ(x, y))fi(x, y) − P̃ (fi)

)

= −
∑

x,y

P̃ (x)
1

Zλ(x)
exp(Θ(x, y)) [ log exp(Θ(x, y)) − log Zλ(x) ]

+

(
∑

x,y

P̃ (x)
1

Zλ(x)
exp(Θ(x, y))

∑

i

λifi(x, y) −
∑

i

λiP̃ (fi)

)

= −
∑

x,y

P̃ (x)
1

Zλ(x)
exp(Θ(x, y))Θ(x, y)

+
∑

x

P̃ (x)
1

Zλ(x)
log Zλ(x)

∑

y

exp(Θ(x, y))

+

(
∑

x,y

P̃ (x)
1

Zλ(x)
exp(Θ(x, y))Θ(x, y) −

∑

i

λiP̃ (fi)

)

=
∑

x

P̃ (x) log Zλ(x) −
∑

i

λiP̃ (fi) . (9.14)

The function L(Pλ,λ) is called the dual function. The Lagrangian mul-
tiplier method finds the final optimal solution by computing the λmin that
minimizes the dual function L(Pλ,λ)
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λmin = arg min
λ

L(Pλ,λ) . (9.15)

The problem of optimizing (9.15) is called the dual optimization problem,
whereas optimizing (9.9) is called the primal optimization problem. The Kuhn-
Tucker theorem asserts that under certain conditions, the primal and the dual
problems are equivalent to each other, and the solution to one problem is also
the solution to the other one [26]. Applying this theorem to our problem here,
we can assert that if λmin is the solution to the dual problem, then Pλmin

is
the solution to the primal problem; that is Pme = Pλmin

.
Based on the above mathematical derivations using the Lagrangian mul-

tiplier method, we can summarize the maximum entropy model as follows:
The maximum entropy model subject to the constraints P has the parametric
form

Pλ(y|x) =
1

Zλ(x)
exp

(
n∑

i=1

λifi(x, y)

)
,

and the optimal parameter values λmin can be determined by minimizing the
dual function

L(Pλ,λ) =
∑

x

P̃ (x) log Zλ(x) −
∑

i

λiP̃ (fi) .

9.2.3 Parameter Computation

For all but the most simple problem, we can not analytically compute the
λmin that minimizes the dual function L(Pλ,λ), and must resort to numerical
methods to find the solution. There are a variety of numerical methods that
can be used to compute λmin. Since the first order derivative of L(Pλ,λ) with
respect to λ can be easily computed as follows (see Problem 9.9 at the end of
this chapter)

∂L(Pλ,λ)
∂λi

= Pλ(fi) − P̃ (fi) , (9.16)

we can use the gradient descent method to incrementally minimize L(Pλ,λ)
through a hill descent process. More specifically, the gradient descent method
starts at an initial guess λ0, and then successively generates vectors λ1,λ2, . . .

using the following equation

λk+1 = λk − α∇L(Pλk
,λk) , (9.17)

where α is called the stepsize for the gradient descent, and must be a positive
but sufficiently small constant. It can be mathematically proven that the
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successively generated vectors λ1,λ2, . . . monotonically decrease the value of
L(Pλ,λ):

L(Pλk+1 ,λk+1) > L(Pλk
,λk), k = 0, 1, 2, . . . (9.18)

Therefore, λmin will be reached with a sufficiently large number of iterations.
One thing to be noticed is that there is no guarantee that the gradient descent
method will generate a globally optimal solution λmin, and that we could well
end up with one of many local minimum solutions.

A variation of the above gradient descent method is the coordinate-wise
descent method, which incrementally improves the solution by updating one
dimension λi of λ at each iteration using the following equations

λ
(k+1)
i = λ

(k)
i − α(Pλ(k)(fi) − P̃ (fi)) , (9.19)

λ(k+1) ← {λ(k)
1 , . . . , λ

(k+1)
i , . . . , λ(k)

n } , (9.20)

and cycling through all the dimensions of λ in sequence. When applied to the
maximum entropy problem, this technique yields the popular Brown Algo-
rithm [70].

An optimization method specially tailored to the maximum entropy prob-
lem is the iterative scaling algorithm developed by Darroch and Ratcliff [71].
The algorithm is applicable whenever the feature functions satisfy the condi-
tion of fi(x, y) ≥ 0 for all i, x, and y. This is, of course, true for the binary-
valued feature functions we introduced in Sect. 9.2.1. The general procedure
of the algorithm can be described as follows:

1. Start with λi = 0, where i = 1, 2, . . . , n.
2. Set i = 1.
3. Compute the increment ∆λi that solves the following equation

∑

x,y

P̃ (x)P (y|x)fi(x, y) exp
(
∆λif

#(x, y)
)

= P̃ (fi) , (9.21)

where f#(x, y) =
∑n

i=1 fi(x, y).
4. Update λi by λi ← λi + ∆λi.
5. If i < n, set i = i+1, goto Step 3; otherwise, if not all λi have converged,

goto Step 2; otherwise, terminate the operation.

The proof of the monotonicity and convergence of the iterative scaling al-
gorithm can be found in [69], It is noteworthy that although this algorithm is
specially tailored to the maximum entropy problem, its performance is not su-
perior to other general purpose optimization algorithms. Our past experiences
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have shown that the gradient ascent and the conjugate gradient methods are
at least as good as, or even better than the iterative scaling algorithm in terms
of the computational simplicity and convergence speed.

9.3 Comparison to Generative Models

In Sect. 9.2.2 we have shown that the maximum entropy model subject to the
constraints P takes the parametric form of

Pλ(Y |X) =
1

Zλ(X)
exp

(
n∑

i=1

λifi(X,Y )

)
.

Obviously, this is an exponential model, and is a close sibling of the Gibbs
distribution described in Chap. 6. Nonetheless, there are some essential dif-
ferences between the maximum entropy and the Gibbs distribution models.
First of all, maximum entropy model uses only feature functions (often binary-
valued) to construct the exponent, while Gibbs distribution uses functions of
more varieties to define the exponent. Second, Gibbs distribution attempts to
model the joint probability of the observed variable X and the hidden variable
Y using the equation

πT (X,Y ) =
1

ZT (X,Y )
exp

(
− 1

T
U(X,Y )

)
.

Because πT (X,Y ) intends to explain not only the hidden variable Y but also
the observed variable X, it is a generative model. By contrast, maximum en-
tropy model takes the observed variable X as the given input, and restricts its
efforts to modeling the hidden variable Y only (i.e. the conditional probability
P (Y |X)). Therefore, by definition it is a discriminative model.

Discriminative models offer several advantages over generative models.
First, because discriminative models do not model observed variables, savings
on modeling efforts are significant, which often lead to reduced requirements
for training data in order to accomplish the same level of modeling accuracies.
Second, which is related to the first one, generative models often incur exces-
sive modeling complexity because of the need for modeling both the observed
and hidden variables. The excessive modeling complexity often leads to either
an untractable learning problem, or a requirement of unpractical amount of
training data. To reduce the model complexity, generative models commonly
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assume conditional independence among all the features comprising the ob-
served variable X. This conditional independence assumption enables us to
approximate the joint probability P (X,Y ) as follows

P (X,Y ) = P (X|Y )P (Y )

= P (X1,X2, . . . , Xm|Y )P (Y )

= P (X1|Y )P (X2|Y ) · · ·P (Xm|Y )P (Y ) , (9.22)

where Xi denotes the i’th dimension of the variable X. Although the feature
independence assumption dramatically reduces the modeling complexity for
generative models, it does come with a cost. Because this assumption is for
the sake of model tractability rather than the reflection of a reality, it under-
mines generative models’ ability to model interacting features or long-range
dependencies of the observations. As a consequence, generative models often
have limited performance accuracies for modeling complex data sets/events
where feature interactions play important roles in characterizing the problem.

Discriminative models, on the other hand, typically make very few assump-
tions about the data and the features. The conditional probability P (Y |X) of
the hidden variable Y can depend on arbitrary, non-independent features of
the observation variable X without forcing the model to account for the distri-
bution of those dependencies. The chosen features may represent attributes of
the same observation at different levels of granularity (for example, pixel-level
features and object-level features of an image), or may aggregate properties
of not only the current observation, but also past and future observations.

The third advantage of discriminative models, which is the most impor-
tant one, originates from the difference in the loss functions the two types of
approaches strive to optimize. Given a training set T = {(xk, yk}N

k=1, genera-
tive models attempt to attain a model Pλ(x,y) that maximizes the likelihood
of the joint probability distribution

max
Pλ(x,y)

Γ (Pλ(x,y)) =
N∏

k=1

Pλ(xk,yk) , (9.23)

while discriminative models strive to find a model Pα(y |x) that maximizes
the likelihood of the conditional probability distribution

max
Pα(y |x)

Γ (Pα(y |x)) =
N∏

k=1

Pα(yk |xk) . (9.24)

For generative and discriminative models using the exponential parametric
family, such as the Gibbs distribution and the maximum entropy models, it
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is more convenient to use log-likelihood as the loss function. In such case,
problems (9.23), (9.24) can be re-written as follows:

max
Dλ(x,y)

Γlog(Dλ(x,y)) =
N∑

k=1

log
eDλ(xk,yk)

∑
xk,yk

eDλ(xk,yk)

=
N∑

k=1

log
eDλ(xk,yk)

eDλ(xk,yk) +
∑

x�=xk,
y �=yk

eDλ(x,y)
(9.25)

max
Dα(y|x)

Γlog(Dα(y|x)) =
N∑

k=1

log
eDα(yk|xk)

∑
yk

eDα(yk|xk)

=
N∑

k=1

log
eDα(yk|xk)

eDα(yk|xk) +
∑

y 
=yk
eDα(y|xk)

(9.26)

where Dλ(x,y), Dα(y |x) are certain energy functions defined by respective
models. It is obvious that maximizing the above two log-likelihood functions
is equivalent to maximizing the terms eDλ(xk,yk) and eDα(yk|xk) while mini-
mizing the terms

∑
x�=xk,
y �=yk

eDλ(x,y) and
∑

y 
=yk
eDα(y|xk) at the same time. In

other words, (9.25) and (9.26) are essentially equivalent to the following two
maximization problems:

max
Dλ(x,y)

Γlog(Dλ(x,y)) ⇒ max
Dλ(x,y)

N∑

k=1

⎛

⎜⎝eDλ(xk,yk) −
∑

x�=xk,
y �=yk

eDλ(x,y)

⎞

⎟⎠ ,

(9.27)

max
Dα(y|x)

Γlog(Dα(y|x)) ⇒ max
Dα(y|x)

N∑

k=1

⎛

⎝eDα(yk|xk) −
∑

y 
=yk

eDα(y|xk)

⎞

⎠ .

(9.28)

From (9.27) and (9.28) we can see a clearer picture of the difference between
the generative and the discriminative approaches. Discriminative models aim
to find a model Dα(y |x) that gives a high score to the true label yk of example
xk, and low scores to all other wrong labels y (it is not guaranteed that the
true label yk will get the highest score because eDα(yk|xk) −

∑
y 
=yk

eDα(y|xk)

is not necessarily larger than zero). In contrast, generative models strive to
construct a model that compares the true label yk of example xk not only
with all its wrong labels, but also with all labels of all other examples x �= xk.
For the task of data classifications, the loss function used by discriminative
models makes more sense because what we really need to compare is the scores
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of the true and wrong labels for the same example xk, we want the score for
the true label as large as possible, and scores for wrong labels as small as
possible at the same time. The loss function used by discriminative models
partially reflects this principle while the one used by generative models does
not. This difference gives another reason why discriminative models generally
outperform generative models for classification tasks.

In Chap. 10, we will present one of the latest graphical models: the max-
imum margin Markov network, that explicitly uses the above principle as its
loss function. We will further illustrate why such a loss function will lead to
an improvement on data classification accuracies.

The modeling philosophy underpinning discriminative models agrees com-
pletely with the modeling imperative advocated by Vapnik (see Sect. 1.2.4):

Vapnik’s Imperative: While solving a problem of interest, do not solve a
more general problem as an intermediate step. Try to get the answer that you
need, but not a more general one. It is quite possible that you have enough
information to solve a particular problem of interest well, but not enough
information to solve a general problem.

As evidenced by the examples given in this section, by trying to solve the
exact problem we have, not a more general one, we gain the model simplic-
ity, as well as the freedom of making fewer assumptions on data and features.
These gains bring to us the ability to incorporate correlations/contexts among
features comprising the observed variable. Such ability will undoubtedly pro-
duce more accurate performances for modeling complex data entities, such as
a beach scene, a home run event, etc, where feature correlations and contexts
play important roles in describing the problems.

9.4 Relation to Conditional Random Field

The conditional random field (CRF) is a discriminative probabilistic model
proposed by John Lafferty, et al [72, 73] to overcome problems associated with
generative models (see Sect. 9.3). CRF was originally designed to label and
segment sequences of observations, but can be used more generally.

Let X, Y be random variables over observed data sequences and corre-
sponding label sequences, respectively. For simplicity of descriptions, we as-
sume that the random variable sequences X and Y have the same length,
and use x = [x1, x2, . . . , xm] and y = [y1, y2, . . . , ym] to represent instances of
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X and Y , respectively. CRF defines the conditional probability distribution
P (Y |X) of label sequences given observation sequences as follows

Pλ(Y |X) =
1

Zλ(X)
exp

(
n∑

i=1

λifi(X,Y )

)
, (9.29)

where Zλ(X) is the normalizing factor that ensures
∑

y Pλ(y|x) = 1, λi is a
model parameter, and fi(X,Y ) is a feature function (often binary-valued) that
becomes positive (one for binary-valued feature function) when X contains a
certain feature in a certain position and Y takes a certain label, and becomes
zero otherwise.

Given a set of training data T = {(xk,yk)}N
k=1 with an empirical distribu-

tion P̃ (X,Y ) , CRF determines the model parameters λ = {λi} by maximizing
the log-likelihood of the training set

Γ (Pλ) =
N∑

k=1

log Pλ(yk|xk)

∝
∑

x,y

P̃ (x,y) log Pλ(y|x) . (9.30)

Interestingly, it can be shown by simple calculus that the log-likelihood
defined in (9.30) is the same as the negative dual function L(Pλ,λ) defined
in (9.14) (see Problem 9.10 at the end of the chapter). In other words, the
conditional random field discussed above is exactly the same as the maximum
entropy model described in Sect. 9.2. Apparently, the two models are quite
different: The maximum entropy model aims to be consistent with all the facts,
but otherwise be as uniform as possible; that is Pme = arg maxP∈P H(P ). On
the other hand, the conditional random field model starts with an exponential
model, and strives to maximize the log-likelihood of the model with respect
to the empirical distribution; that is PCRF = arg maxPλ

Γ (Pλ). Nonetheless,
we have shown that the two models are completely equivalent.

The above discussions directly lead to the following theorem. A complete
proof of the theorem can be found in [69].

Theorem 9.1 (Equivalence of ME and CRF Models). Assume that
we are given an empirical distribution P̃ (X,Y ), and a set of features
f = (f1, . . . , fn). Let P be the set of conditional probability distributions that
agree with P̃ (X,Y ) in terms of the expected values of the feature functions f

P = {P (Y |X) |P (fi) = P̃ (fi), i = 1, 2, . . . , n},
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and let Q be the set of conditional probability distributions that are based on
an exponential model with the feature functions f

Q = {P (Y |X) |P (Y |X) =
1

Zλ(X)
exp(λ · f), λ ∈ Rn}.

The maximum entropy model Pme ∈ P is equivalent with the maximum like-
lihood model PCRL ∈ Q, and this model is uniquely determined:

P ∗ = Pme = PCRL .

9.5 Feature Selection

The maximum entropy method provides a mechanism for automatic feature
selection in its model construction process [68]. This ability is very useful for
problems for which we do not have sufficient knowledge about which features
are actually relevant or useful. Using this ability, we can begin by specifying
a large collection F of candidate features, let the model to discover the set of
features that best characterize the problem, and employ only this best set of
feature in the final model.

The feature selection ability is accomplished based on an incremental
model growth process. Every stage of the process is characterized by a set
of active features S which determine a space of models expressed by (9.31).

P(S) = {P |P (f) = P̃ (f), f ∈ S}. (9.31)

The optimal model PS in this space is the one defined by

PS = arg max
P∈P(S)

H(P ). (9.32)

By adding a new feature f̂ to S, we obtain a new set of active features S ∪ f̂

which determine a set of models

P(S ∪ f̂) = {P |P (f) = P̃ (f), f ∈ S ∪ f̂}. (9.33)

Again, the optimal model in this space is

PS∪f̂ = arg max
P∈P(S∪f̂)

H(P ). (9.34)

Adding the feature f̂ allows the model PS∪f̂ to better account for the training
data. This results in a gain ∆Γ (S, f̂) in the log-likelihood of the training data



216 9 Maximum Entropy Model and Conditional Random Field

∆Γ (S, f̂) = Γ (PS∪f̂ ) − Γ (PS) . (9.35)

Obviously, the more important the feature is for modeling the target problem,
the more log-likelihood gain we will get by adding it to the active feature
set. Therefore, at each stage of the model construction process, the goal of
feature selection can be realized by selecting the candidate feature f̂ which
maximizes the log-likelihood gain ∆Γ (S, f̂). This feature selection and model
construction process can be terminated either when the specified number of
features have been selected, or when the log-likelihood gain ∆Γ (S, f̂) has
fallen below the predefined threshold.

In summary, the feature selection algorithm is composed of the following
operations:

1. Start with S = ∅, thus PS is uniform.
2. For each candidate feature f ∈ F :

(a) Compute the maximum entropy model PS∪f using either the gradient
ascent or the iterative scaling algorithms described in Sect. 9.2.3.

(b) Compute the log-likelihood gain ∆Γ (S, f) using (9.35).
3. Select the feature f̂ with the maximal gain ∆Γ (S, f̂), and add f̂ to S.
4. Compute PS using either the gradient ascent or the iterative scaling al-

gorithms described in Sect. 9.2.3.
5. If the number of selected features reaches the specified threshold, or the

gain ∆Γ (S, f̂) falls below the predefined threshold, terminate the process;
otherwise go to Step 2.

The above feature selection algorithm is computationally costly because
for each candidate feature f ∈ F , we have to compute the maximum entropy
model PS∪f̂ using a numerical method. The algorithm becomes impractical
when the pool of candidate features is large. In the remaining part of this
section, we introduce an approximate algorithm that will yield a great saving
in computational complexity, but will generate only an approximate solution
of the maximum entropy model [68].

Recall that a model PS has a set of parameters λ, one for each feature in S.
The model PS∪f contains this set of parameters, plus a single new parameter
α corresponding to new feature f . To make the feature selection computation
tractable, we make the assumption that the optimal values for λ do not change
as the new feature f is added to S. If this assumption holds, incorporating a
new feature to the model would require only optimizing the single parameter
α to maximize the likelihood. Translating the above statement into math, we
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have
Pα
S∪f =

1
Zα(X)

PS(Y |X)eαf(X,Y ) , (9.36)

where Zα(X) =
∑

y PS(y|x)eαf(x,y). Among these models, we are interested
in the one that maximizes the likelihood gain

GS∪f (α) = Γ (Pα
S∪f ) − Γ (PS)

= −
∑

x

P̃ (x) log Zα(x) + αP̃ (f) . (9.37)

The optimal model is defined as

P̂ ∗
S∪f = arg max

P α
S∪f

GS∪f (α) . (9.38)

Unfortunately, the assumption we made above is fault: when a new feature
f is added to S, the optimal values of all parameters λ change. Therefore, the
model P̂ ∗

S∪f obtained by (9.38) is an approximation to the genuine maximum
entropy model. Nonetheless, this approximation has reduced the computation
of the maximum entropy model for a new feature set S ∪ f to a simple one-
dimensional optimization problem over the single parameter α, which can be
solved by any popular line-search techniques. The saving in computational
complexity is enormous, which makes the approximate algorithm a preferred
choice for real applications. The price to be paid for the computational saving
is, there is a reasonable chance that a less important feature f has a higher
approximate gain GS∪f (α) than the feature f̂ that maximizes the exact gain
∆Γ (S, f̂), so that f instead of f̂ is selected to be include in the final model.
Therefore, the feature set selected by the approximate algorithm may not be
the optimal set in terms of the maximal log-likelihood gain.

9.6 Case Study: Baseball Highlight Detection

Using Maximum Entropy Model

In this case study, we apply the maximum entropy model to the task of base-
ball highlight detection from TV broadcasted baseball videos [74]. We first
provide an overview of the baseball highlight detection system, and then de-
scribe how the maximum entropy model is used to seamlessly integrating
image, audio, and speech features to detect and classify baseball highlights.
At the end of the section, we present experimental evaluations to reveal the
performance accuracies of the ME-based system, and to compare it with the
HMM-based system described in Sect. 7.7.
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9.6.1 System Overview

The goals we set for our baseball highlight detection/classification system are:
(1) the system should be able to detect and classify all major types of high-
lights such as home run, outfield hit, outfield fly, infield hit, infield out, strike
out, walk, etc, and (2) the user should be able to give his/her definition of the
highlights that are of interest. To achieve these goals, we extract image, au-
dio, and text features from the input video, and fuse these multimedia features
along with their contextual information using the maximum entropy model
(see Fig. 9.1). More precisely, for the image stream of the video, we segment
it into individual camera shots, compute color distribution, edge distribution,
camera motion, and detect players as well as their positions for each shot. For
the audio stream, we partition it into audio segments each of which possesses
coherent acoustic profiles, and detect the segments that contain such special
sounds as music, cheers, applaud, etc. For closed captions, we detect informa-
tive words/phrases and record their time codes within the video sequence. If
the closed captions are not available, we apply speech recognition to the au-
dio stream to get the speech transcript of the video sequence. Although these
multimedia features correlate to each other, their presence is often unsynchro-
nized. Particularly, text words always lag behind their corresponding image
and audio features. To cope with the asynchronous nature of different fea-
tures, we use a set of rules defined in Section 9.6.4 to construct a multimedia
feature vector for each shot.

It is obvious that the above multimedia features are simple and low-level
features that can be extracted quickly and reliably. Using such features is
important to ensure the feasibility and scalability of our system in handling
long video sequences. It is also obvious that any of the above features alone will
not be sufficient to achieve our goals. For example, a video segment containing
audience’s cheers does not necessarily correspond to a good play, because the
audience often cheer when they see their favorite players, or when they want
to invigorate their home town team. On the other hand, having detected
the phrase ”home run” from the closed captions does not guarantee that the
associated video segment contains a home run event, because the reporter
may have just mentioned the past home run record of a particular player.
Similarly, observing a player running toward a base in a shot is not sufficient
to determine that the shot corresponds to a hit, because the player may have
been forced out before reaching the base.
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Fig. 9.1. The outline of the ME-based baseball highlight detection system

The above examples also demonstrate the problems of sports highlight
detection using single medium features. The types of sports highlights/events
that can be detected using single medium features are quite limited. However,
highlight detection capabilities can be enhanced remarkably when a seamless
integration of the above image, audio, and text features is realized, because
these features are complementary, and bring a synergistic effect for capturing
the semantics of the original video.

In addition to multimedia feature integration, incorporating contextual
information of the multimedia features is also important. As described in Sect.
7.7.2, there are a few unique views, such as the pitcher’s view, global infield
view, global outfield view, global and closeup player running view, audience
view, etc, that constitute most parts of baseball highlights. Each particular
type of highlight generally has a similar transitional pattern of these unique
views. For example, a typical home run highlight usually consists of four or
more shots, which starts from a pitcher’s view, followed by a panning outfield
and audience view in which the video camera follows the flying ball, and
ends with a global or closeup view of the player running to home base. To
determine whether the current shot belongs to a home run highlight, the
system has to examine not only the features of the current shot, but also the
features of several following shots. In our proposed system, we assimilate the
contextual information by extracting the multimedia features for n (=4 in
our implementation) consecutive shots and combining them into one feature
vector to form the input to the maximum entropy model.

We developed a unique Maximum Entropy Model (MEM)-based frame-
work to perform the statistical modeling of highlight detection and classifica-
tion. Traditionally, the Hidden Markov Model (HMM) described in Chap. 7
is the most common approach for modeling complex and context-sensitive
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data sequences. The HMM usually needs to first segment and classify the
data sequence into a set of finite states, and then observe the state tran-
sitions during its data modeling process. Unlike the HMM-based approach,
our MEM-based framework provides a simple platform to integrate the above
multimedia features as well as their contextual information in a uniform fash-
ion. Because this framework does not need to explicitly classify the data se-
quence into states, it remarkably simplifies the training data creation task
and the highlight detection and classification process. In addition, the MEM
is able to automatically select useful features from a given feature set during
its learning process (see Sect. 9.5), which is particularly valuable for mod-
eling complicated data with very high dimensions. Moreover, accomplishing
baseball highlight detection/classification through a machine learning process
is superior to rule-based approaches because machine learning methods are
more powerful for discovering and expressing implicit, complex knowledge,
and more flexible, adaptive for meeting specific needs. By providing to the
learning process training data biased in certain directions, the user is able to
give a definition of the highlights that reflects his/her preferences.

9.6.2 Highlight Detection Based on Maximum Entropy Model

For our baseball highlight detection and classification system, the task of the
MEM is to build a statistical model which, given the feature vector x of a
video segment, computes the probability P (h|x) that the video segment con-
tains the highlight h. To integrate the multimedia features as well as their
contextual information in a uniform fashion, we use n (=4 in our implementa-
tion) consecutive shots to form a processing unit X , and combine the image,
audio, and text features extracted from these n consecutive shots to create
the feature vector x of the processing unit X . For each feature i in the fea-
ture vector x and each highlight type κ, we introduce a binary-valued feature
function fiκ(x, h) which is defined as follows:

fiκ(x, h) =

{
1 : if feature i is present in x and h = κ

0 : otherwise.
(9.39)

Using the above feature functions, the MEM takes the following form to com-
pute the probability P (h|x) (see Sect. 9.2.2):

P (h|x) =
1

Z(x)
exp

⎛

⎝
∑

i,κ

λiκfiκ(x, h)

⎞

⎠ , (9.40)
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where Z(x) is the normalizing constant, and λiκ is the weight assigned to the
feature function fiκ(x, h).

Each feature function fiκ(x, h) serves to connect a particular feature with
a particular highlight category, and to provide a means for us to incorporate
a priori domain knowledge. If we know for sure that certain features j in
the feature vector x are independent of the highlight category h, we can set the
corresponding feature functions fjh(x, h) to zero. By initializing the feature
functions to the appropriate binary values using domain knowledge, we can
certainly reduce the number of parameters λiκ to be estimated, and hence
accelerate the learning process. On the other hand, if we don’t have sufficient
domain knowledge at hand, we can simply assume that every feature i is
present in every highlight h (i.e. set all the feature functions fiκ(x, κ) = 1)
and let the learning process automatically determine the appropriate weight
for each feature function.

Our implementation of the MEM learning process is as follows: At the
initialization stage, we set all the feature functions fiκ(x, κ) to value one,
and assume that they are all equally important (i.e. assign a uniform value
to all the weights λiκ). During the training process, the weight λiκ for each
feature function fiκ(x, κ) is iteratively adjusted by the learning algorithm.
The training process terminates when all the λiκ’s have converged, and the
final set of λiκ’s constitutes the estimated model of P (h|x).

For each highlight h, the MEM models the multimedia features and their
contextual information in the following fashion. If a particular feature j in
the feature vector x plays a dominant role in identifying the highlight h,
the weight λjh for the feature function fjh(x, h) will obtain a large value
through the learning process so that the probability P (h|x) will become suf-
ficiently large whenever feature j is present in x. For those features that are
either unimportant or unrelated to the highlight h, their associated weights
will become either small or close to zero at the end of the learning process.
On the other hand, if a feature subset {x1, x2, . . .} ∈ x collectively identi-
fies the highlight h, the corresponding weights λ1h, λ2h, . . . will take mod-
erate values and the probability P (h|x) will become large only when the en-
tire feature subset appears in x. Because the input feature vector x embeds
the time correlated multimedia features from n consecutive shots, we take the
full advantage of the MEM-based framework to model both the correlations
among the multimedia features and the contextual information embedded
within patterns of view transitions. Furthermore, unlike the HMM and the
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Bayes Network-based approaches, the proposed MEM-based framework takes
low-level, compound multimedia features as its input, and does not need to
explicitly classify each shot into states (i.e., perform view classification) in its
operations, therefore, it remarkably simplifies the training data creation task
and the highlight detection/classification process.

We use the iterative scaling algorithm described in Sect. 9.2.3 to com-
pute the parameter set λiκ’s, and use the approximation algorithm described
in Sect. 9.5 to conduct feature selection for building the maximum entropy
model.

9.6.3 Multimedia Feature Extraction

As discussed in the preceding section, there are several important views that
serve as the main components of baseball highlights. Each particular type of
highlight typically has a similar pattern of view transitions. Therefore, to de-
tect/classify baseball highlights, we need to extract features that capture and
distinguish these view patterns. This task can be achieved to a certain extent
by examining such image features as color and edge distributions, camera
motions, players and their positions. Features from audio and closed captions
often provide complementary, higher level clues to the detection/classification
process. The multimedia features and their extractions are described as fol-
lows.

Image Features

Given an input video, we first segment the image stream of the video into
individual shots and then conduct the following feature extractions for each
shot.

• Color distribution: A standard baseball field mainly consists of grass
areas and base areas. By computing the distribution of green and soil col-
ors in keyframes of a shot, we can roughly figure out which part of the
field the shot is displaying. Within our framework, each shot is represented
by three keyframes: the first, the middle, and the last frames of the shot.
Each keyframe is divided into 3 × 3 blocks, and the color distribution of
a keyframe is composed of nine data pairs (gi, si) where gi and si repre-
sent the percentages of green and soil colors in block i, respectively. The
color distribution of the entire shot is then derived by averaging the color
distributions of the three keyframes.
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• Edge distribution: This feature is useful for distinguishing field views
from audience views. An audience view is usually a long shot of a large
number of spectators who collectively form texture-like areas in video
frames. Edge density in such views is higher on average than in other
views. The edge distribution of a shot is computed in a manner similar to
the color distribution. First, edge detection is conducted for each keyframe
to obtain edge pixels (the pixels belonging to an edge). Next, the frame
is divided into 3 × 3 blocks, and the percentages of edge pixels in the
nine blocks are computed. These nine percentage values are then used to
form the edge distribution of the frame. Finally, the edge distribution of
the entire shot is derived by averaging the edge distributions of the three
keyframes of the shot.

• Camera motion: Camera motion becomes conspicuous and intense in
highlight scenes because cameras track either the ball or the players’ mo-
tions to capture the entire play. We apply a simplified camera motion
model [75] to estimate camera pan, tilt and zoom, which are the most com-
monly used camera operations in TV broadcasting. This model defines the
relationship between two images by a six-parameter linear transformation:

x′ = Px, (9.41)

where

x′ =

[
u′

v′

]
P =

[
sf 0 −ky

0 sf kx

]
x =

⎡

⎢⎣
u

v

1

⎤

⎥⎦ (9.42)

and x and x′ are the two image coordinates of a 3-D point in the real-world
scene. The transformation P has three unknown parameters:

sf =
f ′

f
kx = f ′θx ky = f ′θy, (9.43)

where sf is the scale between the two focal lengths f and f ′, and θx, θy

represent the pan and tilt angles, respectively. The above three unknown
parameters are estimated using the algorithm developed by Szeliski and
Shum [76]. This algorithm obtains the best estimate of the three parame-
ters by minimizing the following error function E:

E(D) =
∑

i

[
I0(xi) − Î1(x′

i)
]2

, (9.44)

where I0, I1 are the two consecutive frames, Î1 is the warped image of I1

obtained using the current transformation P . Initially, P is set to sf = 1,
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θx = 0, θy = 0. D is the incremental update for P ,

(I + D)P =⇒ P (9.45)

and each x′
i is calculated as,

x′
i = (I + D)xi. (9.46)

In the above estimation process, the error function E(D) is minimized
using the Cholesky decomposition algorithm.
Since the acquisition of camera motion is computation-intensive, and is
prone to error, we apply the random sample consensus scheme (RANSAC)
[77] to make the computation faster and more robust. The RANSAC
scheme randomly picks up a small number of pixels in video frames to
obtain an initial camera motion estimation, and then repeats the process
enough times on different set of pixels to get the best estimation which
maximizes the number of pixels satisfying the estimation.

• Player detection: Players are the central actors in a baseball game,
and their movements have strong correlations to each class of highlights.
Although general human detections in cluttered environments are very
challenging, player detection in baseball game videos is much easier due to
the fact that players in the baseball field are sparsely positioned and are
mostly surrounded by green or soil background colors. By examining the
distribution of green and soil colors in a keyframe, we are able to figure out
the location and the range of the baseball field within the frame. Then,
within the range of the baseball field, we discover the areas that have
non-background colors and higher edge densities. These areas are good
candidates for baseball players. Among all the candidates, false candidates
and outliers can be further discovered by tracking each candidate within
the shot because genuine candidates possess stable image features (e.g.
size and color) and consistent trajectories while false candidates do not.

Special Sound Detection

Certain sounds in a baseball game, such as cheers, applause, music, speech, and
mixtures of music and speech, provide important clues for highlight detection.
Figure 9.2 shows the process of our special sound detection module which
consists of two stages. In the training stage, we construct a model for each
type of sound listed above using annotated training data. The mel-cepstral
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coefficients from raw wave signals are used as the input feature vectors of the
sound models, and the Gaussian mixture model (GMM) is used to model the
distributions of the input vectors. With the GMM, the likelihood of feature
vector x given sound model c is defined as:

P (x|c) =
Kc∑

i

ηc
i N(x;µc

i , v
c
i ) (9.47)

Where Kc is the number of mixtures in model c, ηc
i is the mixing coefficient,

µc
i and vc

i are the mean and the variance of each mixing Gaussian. Given
the number of mixtures Kc, the well-known EM (Expectation-Maximization)
algorithm [78] is used to estimate the parameters of each model. To account
for the difference in the complexity and the training data size for different
sound models, the number of mixtures Kc for each sound model is chosen
differently based on the Bayesian Information Criterion (BIC) [79].

Sound
Samples

Training
Sound
Models

Audio
Stream

Silence
Detection

Segmentation Classification

Fig. 9.2. Process of special sound detection

In the detection stage, we first detect and eliminate silent regions from the
audio stream, and then partition those non-silent regions into audio segments
each of which possesses similar acoustical profiles. Each audio segment then
becomes the input to all the five sound models constructed in the training
stage, which each outputs a probability showing the likelihood of the audio
segment being a particular sound. These five likelihoods are then used as part
of the multimedia features in forming the feature vector of a camera shot.

Closed Captions

Informative words from closed captions often provide the most direct and
abstracted clues to the detection/classification process. We extract informa-
tive words based on the mutual information metric between a word w and a
highlight h:
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MI(w, h) = p(w, h) log
p(w, h)

p(w)p(h)

+p(w, h) log
p(w, h)

p(w)p(h)

+p(w, h) log
p(w, h)

p(w)p(h)

+p(w, h) log
p(w, h)

p(w)p(h)
(9.48)

where p(w, h) denotes the probability that both the word w and the highlight
h are present, p(w, h) the probability that w is absent but h is present, p(w, h)
the probability that w is present but h is absent, and p(w, h) the probabil-
ity that both w and h are absent, in the context under consideration. Metric
MI(w, h) has the property that its value becomes large if the presence of the
word w positively indicates the presence of the highlight h, whereas its value
becomes small in the opposite situation. Therefore for our task, informative
words for a particular highlight are those which have large mutual informa-
tion measures with the highlight. From the training data, we have identified
a list of 72 informative words for the major highlights, which include: field,
center, strike out, base, double out, score, home run, etc. In forming the mul-
timedia feature vector of a camera shot, we use 72 dimensions to indicate the
presence/absence of the 72 informative words. For each dimension, value one
indicates the presence of a particular word while value zero indicates other-
wise.

9.6.4 Multimedia Feature Vector Construction

As described in the proceeding subsections, the image, audio, and text fea-
tures are extracted separately from their respective streams of the input video
program. Although these features correlate to each other, their presence is
often unsynchronized. Particularly, text words always lag behind their cor-
responding image and audio features because the announcer will not start
the descriptions until he/she has observed the entire event. To cope with the
asynchronous nature of different features, we use the following rules for con-
structing the multimedia feature vector of a shot Si.

1. All the image features extracted from Si are used to form part of the
multimedia feature vector of Si.
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2. Assuming that the shot Si starts at time ti1 and ends at time ti2, any
special sounds whose occurrence period overlaps the time interval [ti1, ti2]
are included in the multimedia feature vector of Si.

3. Assuming that the time window starts at time ti2 and lasts for Tw seconds
(Tw = 5 in our implementation), any informative words which are present
in the time interval [ti2, ti2 + Tw] are included in the multimedia feature
vector of Si.

Once the feature vector for each shot has been created using the above
rules, we combine the feature vectors of n consecutive shots to form an in-
put vector to the MEM engine. Because this input vector integrates the time
correlated multimedia features from n consecutive shots, we take the full ad-
vantage of the MEM to model both the correlations among the multimedia
features and the contextual information embedded within the view transi-
tional patterns.

9.6.5 Experiments

We collected 10 baseball videos totalling 32 hours for training and testing
purposes. These games were obtained from five major TV stations in the U.S.
and consist of 16 teams playing in 9 stadiums.

All the games were manually labeled by three human operators who were
not familiar with our baseball highlight detection/classification system. The
labeling process is straightforward: when the operator observes a highlight
from a video program, he/she labels the highlight by indicating the starting
and ending points, and the category of the highlight. Using our MEM-based
framework, there is no need to further decompose a highlight sequence into
individual views, and to label the category of each of the constituent views.
Currently, the highlight labels consist of seven categories: home run, outfield
hit, outfield out, infield hit, infield out, strike out, walk. These categories have
been chosen because they cover the major events in a typical baseball game.
We used seven games as the training data and the remaining three games as
the testing data. The labeled highlights in the testing data were used as the
ground truth to evaluate the highlight detection/classification accuracy of our
system.



228 9 Maximum Entropy Model and Conditional Random Field

Performance Evaluations

The proposed highlight detection and classification system starts with the ex-
traction of the image, audio, and text features, and the creation of a feature
vector for each processing unit of the input video. From each shot, we extract
four image features (color, edge, camera motion and player), five audio fea-
tures (speech, music, cheers, applause, mixtures of speech and music), detect
the presence/absence of 72 informative words/phrases, and encode these im-
age, audio, and text features into 109, 5, and 72 dimensions, respectively. As
described in the preceding subsections, to incorporate contextual information
into the MEM-based framework, we combine the features of n consecutive
shots together to form a 744-dimensional feature vector for each processing
unit.

The above feature vectors and the manually assigned labels in the training
data are the input to the MEM-based framework during the learning process.
The output contains a list of selected features and the set of λiκ’s that maxi-
mize the log-likelihood of the training data. The learning process has selected
the top 30 features which are most useful for detecting and classifying the
above seven types of highlights.

Table 9.1. Recalls and precisions of baseball highlight classifications

Multimedia Features Image Features Only

Highlights Recall Precision Recall Precision

home run 50.0% 50.0% 25.0% 25.0%

outfield hit 84.9% 75.7% 70.5% 61.2%

outfield out 83.4% 93.7% 78.9% 68.0%

infield hit 49.3% 47.9% 32.1% 32.3%

infield out 78.5% 56.3% 52.4% 56.8%

strike out 79.0% 63.4% 35.1% 47.2%

walk 65.2% 51.2% 11.7% 16.2%

On average, the recall and precision for highlight classification are 70.0%
and 62.60%, respectively. Table 9.1 details the performance results for each
type of highlight. The precisions for infield hit and infield out are relatively
low because these two types of highlights usually have quite similar view
transitional patterns which often lead to misclassifications (i.e., infield hit
classified to infield out, and vice versa). We missed some home runs due to
the fact that there were not enough training samples.
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To understand how the multimedia features contribute to the highlight
classification performances, we also conducted highlight classification using
the image features only. The recall and precision for each type of highlight are
shown in the right two columns of Table 9.1. As expected, the average recall
and precision have dropped to 43.7% and 43.8%, respectively. The classifica-
tion accuracies for strike out and walk are particularly low because these two
categories usually start and end at pitching views, and present less contextual
information compared to other types of highlights. These poor results demon-
strate that image features alone are not sufficient for modeling major baseball
game highlights.

To get a better insight of the system performance, we take a closer look
at the performance statistics for one of the baseball games. The entire game
consisted of 12 innings and 70 outs. There are 94 highlights that belong to
one of the seven categories labeled by the operators. Our system detected 91
of those highlights, and classified 71 correctly. Table 9.2 lists the performance
statistics for this game.

Table 9.2. Performance statistics on game five of the world series 2001

highlight total correct misclassified missed false alarm recall precision

home run 3 2 0 1 0 66.6% 100%

outfield hit 13 11 2 0 2 84.62% 73.33%

outfield out 17 14 1 2 0 82.35% 93.33%

infield hit 6 3 1 2 3 50.00% 42.86%

infield out 30 26 2 2 5 86.67% 78.79%

strike out 16 11 0 5 2 68.75% 84.62%

walk 9 5 0 4 1 55.56% 83.33%

Performance Comparisons

We conducted performance comparisons between the MEM-based system and
the HMM-based system described in Sect. 7.7. The HMM-based system uses
the same set of image, audio, and text features as described in Section 9.6.3,
and is evaluated using the same training and testing data sets as the MEM-
based system. However, for training the HMM-based system, the training data
set needed to be relabeled so that for each highlight sequence, in addition to
the information labeled for the MEM-based system, the starting point, ending
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point and view category of each constituent view must be labeled as well. This
training data labeling task is much more arduous and time consuming.

The HMM-based system consists of seven unique HMM’s, each of which
models a particular type of highlight. For each HMM, we define the following
items:

1. State V : one of the seven types of views described in Section 7.7.2.
2. Observation M : the 186-dimensional multimedia feature vector created for

a given shot (see the beginning of this section for a detailed description).
3. Observation probability p(M |V ): the probability of observing the feature

vector M given the state V . We use the Bayes rule to compute p(M |V )
from the training data.

4. Transition probability p(Vt+1|Vt): the probability that state Vt transits to
state Vt+1 at the next time instant. Given the class of highlights, the state
(view) transition probability can be learned from the training data.

5. Initial state distribution π: which also can be learned from the training
data.

Given the state V , the observation M , the observation probability p(M |V ),
the transition probability P (Vt+1|Vt), and the initial state distribution π, the
HMM is uniquely defined. With the HMM Hk, the probability of observing
the sequence M = Mt1 Mt2 · · · MT can be obtained as:

P (M|Hk) =
∑

all V

π(Vt1)p(Mt1 |Vt1)p(Vt2 |Vt1)p(Mt2 |Vt2)

× · · · p(VT |VT−1)p(MT |VT ), (9.49)

where V denotes a fixed state sequence V = Vt1 Vt2 · · · VT .
The HMM-based system performs baseball highlight detection /classifica-

tion as follows:

1. Segment the input video into individual shots.
2. For each shot Si, compute the observation Mi.
3. Compute the observation probability P (Mi|Vj) for each shot Si and each

view type Vj .
4. For each processing unit Mx (which consists of 3 to 5 shots, depend-

ing on the HMM model), compute the probability P (Mx|Hk) of the ob-
servation sequence Mx = Mx1 Mx2 · · · MxT using each HMM Hk. If
P = maxHk

P (Mx|Hk) exceeds the predefined threshold, then the high-
light class represented by HMM h = argmaxHk

P (Mx|Hk) is assigned to
Mx.
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Table 9.3 shows the evaluation results of the HMM-based system. For ease
of comparisons, we have included the highlight classification accuracies of the
MEM-based system in the left columns of the table as well. It is observed
that the MEM-based system produced better performance than the HMM-
based system on all highlight categories, and this advantage becomes very
remarkable for the categories of strike out and walk. This phenomenon can
be explained by the fact that the HMM-based system uses the naive Bayes
to calculate the observation probability P (M |V ), which assumes that all the
features extracted from each shot are independent of each other. Obviously
this assumption reduces the system’s ability to model the correlations among
the multimedia features, leading to higher error rates in the computation of
probabilities P (M |V ). For the highlight categories that have relatively short
view transitional patterns, such as strike out and walk, the HMM might not
be able to compensate for errors in the observation probabilities because less
contextual information is contained within the sequence.

Table 9.3. Performance comparisons between the two systems.

MEM-based System HMM-based System

Highlights Recall Precision Recall Precision

home run 50.0% 50.0% 50.0% 50.0%

outfield hit 84.9% 75.7% 83.4% 68.2%

outfield out 83.4% 93.7% 75.9% 88.0%

infield hit 49.3% 47.9% 44.1% 47.3%

infield out 78.5% 56.3% 67.5% 40.8%

strike out 79.0% 63.4% 55.1% 47.2%

walk 65.2% 51.2% 57.7% 46.2%

The above experimental evaluations demonstrate the superiority of the
MEM-based system in its ability to detect more major baseball highlights
and in its overall accuracy of detecting these major highlights. Because MEM
and HMM are the representative discriminative and generative models, and
we have tested the two models under exactly the same conditions, the above
performance comparisons are a good demonstration of how much advantage
a discriminative model can have over a generative model. Moreover, because
the MEM-based framework does not need to explicitly segment and classify
the input video into states during its data modeling process, it remarkably
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simplifies the training data creation and the highlight detection/classification
tasks.

Problems

9.1. Suppose that the average number of rolling an uneven dice is 4, calculate
the maximum entropy distribution of each number.

9.2. Find the maximum entropy distribution for positive real numbers with
expectation µ.

9.3. Find the maximum entropy distribution for real numbers with expecta-
tion µ and variance σ2

9.4. Show that entropy H(P ) is a concave function over probability distribu-
tions, i.e., for ω > 0,

ωH(P ) + (1 − ω)H(Q) < H(ωP + (1 − ω)Q)

9.5. Assume Pλ(y|x) has the form in (9.12), show that − log Pλ(y|x) is a
convex function over λ.

9.6. This chapter uses entropy as the measure of uniformity. A different mea-
sure of uniformity is the norm ‖p‖2 of the distribution function:

‖p‖2 =
∫

x

(p(x))2dx

where a smaller value of ‖p‖2 means more uniform. Suppose that we are given
a set of expectations:

E(fi) = ci, i = 1, 2 · · · , n

show that the distribution that satisfies the expectation constraints while
having the minimal norm has the following form:

p(x) = λ0 +
n∑

i=1

λifi(x) .

9.7. Maximum entropy model with soft constraints:

Pme = arg max
P∈P

H(P ) − γ

2

n∑

i=1

(EP (fi) − Ê(fi))2 .
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Show that the dual problem is

λ = arg min
λ

−
∑

x

P̃ (x) log Pλ(y|x) +
1
2γ

‖λ‖2 ,

where

Pλ(y|x) =
1

Zλ(x)
exp

(
n∑

i=1

λifi(x, y)

)
.

9.8. Let X be a d-dimensional random vector. Suppose that the marginal dis-
tribution of Xi and Xj , 1 ≤ i < j ≤ d is pij(xi, xj). Show that the maximum
entropy distribution of X has the form:

P (X) =
∏

i<j

fij(xi, xj)

where fij are some nonnegative functions.

9.9. Show that
∂L(Pλ,λ)

∂λi
= Pλ(fi) − P̃ (fi) ,

where L(Pλ,λ) is the dual function defined by (9.14).

9.10. Prove that the log-likelihood Γ (Pλ) defined in (9.30) is the same as the
negative dual function L(Pλ,λ) defined in (9.14): Γ (Pλ) = L(Pλ,λ).
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Max-Margin Classifications

So far we have described a variety of graphical models, either generative or
discriminative. Graphical models are powerful statistical tools for modeling
correlations and dependencies among different instances, often resulting in
significant improvements in accuracy over approaches that classify instances
independently. Because of this, graphical models are preferred choices for a
broad range of multimedia content analysis applications.

In training a graphical model using a set of training samples, model pa-
rameters are usually determined by maximizing the likelihood between the
model and the training samples. However, graphical models obtained this way
are often plagued with the overfitting problem, and there is no guarantee that
such graphical models have sufficient generalization powers to model unseen
data as accurately as the training samples.

In recent years, Support Vector Machines (SVMs) proposed by Cortes and
Vapnik [80, 7] have become the state-of-the-art classifier for supervised classi-
fication problems, and have demonstrated great successes in a broad range of
tasks, including document categorization, character recognition, image clas-
sification, and many more. SVMs are famous for their strong generalization
guarantees derived from the max-margin property, and for their ability to use
very high dimensional feature spaces using the kernel trick. These are the
characteristics that other classifiers do not have.

Despite many impressive successes, SVMs also have some significant lim-
itations: They can assign only one label at a time, and their running time is
polynomial in the number of classes. This means that SVMs can not jointly
classify correlated instances in a systematic way, and can not take advantage
of some precious information for problems with rich structures.
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Clearly, we have two approaches that offer complementary strengths and
weaknesses. The SVM approach can exploit very high dimensional feature
spaces with strong generalization guarantees, but can only perform simple
classifications of instances independently, whereas the graphical model ap-
proach can model correlations and dependencies among different instances in
principled and efficient ways, but does not provide the same level of general-
ization ability as SVMs. So one natural question to ask is whether or not there
is a way to unify both approaches and to get the best of them. The answer
is yes. The new framework proposed by Tasker, Guestrin and Koller is called
Max-Margin Markov Networks (M3-nets in short) [81]. It is a major break-
through in the machine learning field in recent years because it has enabled
us to apply the SVM principles to a whole new set of problems.

In this chapter, we first provide an overview of SVMs, where the concepts of
margin, kernel, generalization bound, etc. are introduced, and a SVM training
algorithm, namely Sequential Minimal Optimization (SMO), is presented. In
the second half of the chapter, we present the max-margin Markov network
framework, which unifies all the ideas of the SVM and the graphical model
approaches. We also compare the M3-net with other graphical models, and
provide some intuitive insights into why the M3-net is superior to others.

10.1 Support Vector Machines (SVMs)

The development of SVMs is a significant product of the generalization bound
analysis that aims to discover the relationship between the capacity of a learn-
ing machine and its performance accuracy. For a given learning task, with a
given finite amount of training data, the best generalization performance will
be achieved when the right balance is struck between the accuracy attained
on that particular training set, and the ”capacity” of the machine, that is,
the ability of the machine to learn any training set without error [82]. A ma-
chine with too much capacity is like a person with a photographic memory
who perceives every vehicle he/she has seen as a different type of vehicle, and
would like to classify each individual vehicle into a different category, while a
machine with too little capacity is like a person who can only observe the most
prominent differences among different instances, and would like to declare all
the objects with wheels as vehicles. Obviously, neither machines can general-
ize well. In this section, we will briefly introduce the concept of generalization
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bound and its relationship with SVMs. We will focus our efforts mainly on
SVMs themselves, as well as their computing algorithms.

10.1.1 Loss Function and Risk

Given a set of labeled instances S = {(x(i), y(i))}n
i=1, where x(i) is the feature

vector of the i’th instance, and y(i) is a label assigned to the instance by a
trusted source, the goal of supervised classifications is to learn a mapping
function (a classifier) f : x → y from the training set S. In learning such a
mapping function y = f(x), we need some ways to evaluate the classification
performance of f(x). A popular tool for this purpose is the loss function
L(x, y, f(x)) that gives the cost of assigning label f(x) to observation x, given
that the correct label is y. L(x, y, f(x)) is usually defined over the domain
[0,∞], and the minimum value 0 is reached when f(x) assigns the correct
label to x: L(x, y, y) = 0.

A rational goal for learning a classifier y = f(x) would be to minimize
the total loss on the labels to be predicted. In the case where one does not
know what objects will have to be classified in the future, it makes sense
to minimize the expected loss on future data, called the expected risk R(f),
which is a function of the classifier f :

R(f) =
∫

x,y

L(x, y, f(x))dP (x, y) , (10.1)

where P (x, y) is the joint probability distribution over x and y. In real appli-
cations, since P (x, y) can not be obtained for all but very simple problems, it
is impossible in general to compute the expected risk R(f). A more practical
approach is to compute the empirical risk Remp(f) evaluated on the training
set S:

Remp(f) =
1
n

n∑

i=1

L(x(i), y(i), f(x(i))) , (10.2)

where n is the number of training samples in S.

10.1.2 Structural Risk Minimization

For a given classification task, a classifier y = f(x) is generally chosen from
some appropriately selected parametric family F = {f(x,α), α ∈ H}, where
H is some parameter space. Thus the goal for learning a classifier can be
rephrased as determination of the parameter set α such that the empirical
risk Remp(f) is minimized.
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The choice of the parametric family F is very important. If F is too
expressive, we will have a classifier with a photographic memory which is
prone to overfitting. If it is not expressive enough, then the learned classifier
may not be able to approximate the real function. This qualitative statement
is made explicit with the following risk bound : For any sample S of size n,
threshold δ > 0, and f ∈ F , we have

R(f) ≤ Remp(f) + Ω(F , n, δ−1) , (10.3)

where Ω(F , n, δ−1) is a measure of the capacity of the parameter class F ,
which is related to its expressiveness.

There are several important characteristics and implications about this
bound. First, it is independent of P (x, y). It only assumes that both the
training and testing data are drawn independently according to some P (x, y).
Second, it generalizes the large number law in function space and tells us when
the empirical risk Remp(f) will be a good approximation to the expected risk
R(f). From (10.3) it is clear that, the more expressive the parameter class F ,
the larger the capacity measure Ω(F , n, δ−1), and hence the less approximate
the empirical risk Remp(f) to R(f). This is nothing but the characterization of
overfitting, and explains why classifiers with large capacities do not generalize
well. On the other hand, if we use a parameter class F that is not expressive
enough, although the capacity measure Ω(F , n, δ−1) becomes smaller, the
empirical risk Remp(f), which represents the training error, will become larger.
Therefore, compromise has to be made to find a parameter class F that has
the smallest capacity measure Ω(F , n, δ−1), but at the same time, can yield
small enough training error Remp(f), where f ∈ F .

The risk bound defined by (10.3) gives a principled method for choos-
ing a classifier, which is called structural risk minimization [7]. Let Fk =
{f(x,α), α ∈ Hk} be a subset of the parametric family: Fk ⊂ F . The essence
of the structural risk minimization is that we define a structure of nested
subsets

F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ · · · (10.4)

such that the corresponding capacity measure hk = Ω(Fk, n, δ−1) of each
subset Fk satisfies

h1 ≤ h2 ≤ · · · ≤ hk ≤ · · · (10.5)

For a given set of training data S = {(x(i), y(i))}n
i=1, we iterate through the

subsets Fk in the order of increased capacity. At each iteration step, we find
the function f∗

k ∈ Fk that produces the minimal training error. Once we get
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all the functions f∗
k , the optimal classifier is the one that minimizes the right

hand side of (10.3) (the risk bound). The bound is not necessarily tight, and
thus it does not guarantee that a classifier with a higher bound will have
worse generalization performance than the one with a lower bound. But it
does give a theoretical bound on the generalization error for a given classifier
which is independent of the distribution P (x, y), and hence provide a more
principled heuristic for choosing classifiers. We will see in Sect. 10.1.4 how
this has motivated a powerful learning algorithm with nice generalization
guanrantees, the support vector machines.

10.1.3 Support Vector Machines

A support vector machine is a linear classifier that attempts to maximize the
confidence margin for classifying the given training data. We first consider the
simplest case of linear SVMs trained on separable data, and will later cover
the general case of nonlinear SVMs trained on non-separable data.

Separable Case

Consider the set of training data that consist of two classes S = {x(i), y(i)}n
i=1 ,

y(i) ∈ {−1, 1}, x(i) ∈ R
d. A linear classifier able to separate the positive from

the negative examples will be a hyperplane in R
d characterized by a normal

w and an offset b:
h(x) = wT x + b . (10.6)

For a linearly separable data set S, there exists a hyperplane that satisfies all
the points in S:

wT x(i) + b ≥ 0 for y(i) = +1 , (10.7)

wT x(i) + b < 0 for y(i) = −1 . (10.8)

The above two equations can be written more succinctly as

y(i)(wT x(i) + b) ≥ 0 ∀i . (10.9)

There are an infinite number of (w, b) pairs satisfying the inequality (10.9),
since for any (w, b) satisfying (10.9), (aw, ab), ∀a > 0, also satisfies it. To
make the solution unique, we can rescale (w, b) so that the closest points to
the hyperplane satisfy |(wT x(i) + b)| = 1. This normalization leads to the
following canonical form for SVM
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Fig. 10.1. Linear SVM for the separable case. The circled points are the support

vectors

y(i)(wT x(i) + b) ≥ 1 ∀i . (10.10)

Figure 10.1 shows the geometry of the canonical SVM setting. From (10.10)
and the figure one can easily verify that the hyperplane has the following
properties:

1. For any two points x1 and x2 lying on the hyperplane, wT (x1 − x2) = 0.
Therefore, w is the vector normal to the surface of the hyperplane.

2. For any point xh on the hyperplane, wT xh = −b.
3. The signed distance from a point x to the hyperplane is given by

d =
w

||w|| (x − x0)

=
1

||w|| (w
T x − wT x0)

=
1

||w|| (w
T x + b) (10.11)

where x0 is the intersection point between the normal vector w and
the hyperplane. Since x0 lies on the hyperplane, it satisfies the equality
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wT x0 = −b in item 2, which leads to the last equality in the above
derivation.

4. The perpendicular distance from the hyperplane to the origin equals
|b|/||w|| (see Problem 10.2 at the end of the chapter).

5. The points for which the equality in (10.10) holds are those points that
lie on the hyperplanes wT x + b = ±1 (denoted as H1, H2, respectively),
and have the perpendicular distance 1/||w|| to the separating hyperplane
wT x + b = 0.

Let d+, d−1 be the distances from the separating hyperplane to the closest
positive, negative examples, respectively. The margin of the separating hy-
perplane is defined as d+ + d−1. It is obvious from Fig. 10.1 that, the closest
positive, negative examples to the separating hyperplane are those points lying
on the hyperplanes H1, H2, respectively, and hence the margin size equals

d+ + d−1 =
1

||w|| +
1

||w|| =
2

||w|| . (10.12)

The goal of SVM is to find the pair of hyperplanes H1, H2 that maximize
the margin, subject to the constraints (10.10). This can be formulated as the
following constrained optimization problem:

min
w,b

1
2
wT w , (10.13)

subject to y(i)(wT x(i) + b) ≥ 1 ∀i .

This is a convex optimization problem for which we are guaranteed to obtain
its global optimal solution.

Non-Separable Case

In the real world, there are many data sets that are not linearly separable.
When the SVM derived above is applied to non-separable data sets, some data
points x(i) could be at a distance ξi/||w|| on the wrong side of the margin
hyperplane (see Fig. 10.2). To extend the SVM to handle non-separable data,
we can relax the constraint (10.10), and add a further cost for doing so. More
precisely, we introduce positive slack variables ξi, one for each data point x(i),
and transform the constraint (10.10) to

y(i)(wT x(i) + b) ≥ 1 − ξi , ξi ≥ 0 ∀i . (10.14)
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Fig. 10.2. Linear SVM for the non-separable case

For a misclassification error to occur, the corresponding ξi must exceed unity,
hence 1

n

∑n
i=1 ξi is an upper bound of the average loss on the training data.

Therefore, a natural way to assign an extra cost for errors is to add a new
term C

n

∑n
i=1 ξi to the cost function, where C is a parameter to be chosen by

the user. A larger C corresponds to a higher penalty to errors, with C = ∞
meaning that no error can be tolerated at all (its cost is infinite).

With the above preparations, now the SVM for non-separable case can be
casted as the following optimization problem:

min
w,b,ξi

1
2
wT w +

C

n

n∑

i=1

ξi , (10.15)

subject to y(i)(wT x(i) + b) ≥ 1 − ξi , ξi ≥ 0 ∀i .

Again, this is a convex optimization problem, and the Lagrange multiplier
method can be applied to obtain the globally optimal solution.
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10.1.4 Theoretical Justification

Before describing the algorithm for solving the optimization problem (10.15),
let’s see why choosing a classifier by maximizing the margin is a rational thing
to do. One informal reason is that, if we believe that the Euclidean distance
is a good measure of the dissimilarity between instances, then the bigger the
margin, the more confidence we have on the classification. This is because the
more room we have between the two different classes, the less chance we have
to misclassify data in future classification.

A more formal argument is that, by choosing only the hyperplanes that
have the maximal margin, we restrict the size of the parameter class for can-
didate classifiers, and hence minimize the capacity measure Ω(F , n, δ−1) in
the right hand side of (10.3). In fact, for the 0−1 loss which assigns 1 for mis-
classification and 0 otherwise, it has been shown by Vapnik that the capacity
measure can be written as follows [7]

Ω(F , n, δ−1) =
(

V (log(2n/V ) + 1) + log(4/δ)
n

) 1
2

, (10.16)

where V is the VC-dimension of the class of classifiers F , and n is the size of
the training sample. This bound is called the VC confidence, and shows the
dependence on V and n of the capacity measure. Furthermore, for the class of
linear classifiers with a specific margin, Vapnik derived an expression indicat-
ing that bigger margins yield smaller capacity measures, giving considerable
justification for maximizing the margin.

In fact, the cost function (10.15) for SVMs can be easily justified from
the structural risk minimization point of view. The term 1

n

∑n
i=1 ξi in the

cost function is an upper bound of the average loss on the training data.
Minimizing this term is equivalent to minimizing the empirical risk Remp(f).
On the other hand, the term 1

2w
T w is a reciprocal of the margin of the

separating hyperplane. Minimizing this term is equivalent to maximizing the
margin of the linear classifier, which, according to Vapnik, is equivalent to
reducing the capacity Ω(F , n, δ−1). Therefore, the cost function for SVMs is
related to the risk bound defined in (10.3). Classifiers that minimize the risk
bound are guaranteed to have good performance accuracies for classifying
future unseen data. The strong theoretical justification and generalization
guarantee for SVMs are the unique properties that differentiate SVMs from
other classifiers in the literature.
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10.1.5 SVM Dual

In this subsection, we apply the Lagrange multiplier method to compute the
solution to the constrained optimization problem (10.15). The Lagrange mul-
tiplier method first defines a Lagrange function using a set of non-negative
lagrangian multipliers α = {αi} and β = {βi}

LP =
1
2
wT w+

C

n

n∑

i=1

ξi−
n∑

i=1

αi(y(i)(wT x(i) +b)−1+ξi)−
n∑

i=1

βiξi . (10.17)

Next, the unconstrained minimum of the Lagrangian function LP is computed
with respect to w, b, and ξi. Setting the respective derivatives to zero, we have

∂LP

∂w
= w −

n∑

i=1

αiy
(i)x(i) = 0 ⇒ w =

n∑

i=1

αiy
(i)x(i) , (10.18)

∂LP

∂b
= −

n∑

i=1

αiy
(i) = 0 ⇒ 0 =

n∑

i=1

αiy
(i) , (10.19)

∂LP

∂ξi
=

C

n
− αi − βi = 0 ⇒ αi =

C

n
− βi . (10.20)

Substituting these solutions to (10.17), we obtain the dual objective function

LD =
n∑

i=1

αi −
1
2

n∑

i=1

n∑

j=1

αiαjy
(i)y(j)x(i) · x(j) . (10.21)

Since the primal problem is convex and strictly feasible, its minimum solution
can be obtained by equivalently maximizing the dual objective function

max
α

LD(α) =
n∑

i=1

αi −
1
2

n∑

i=1

n∑

j=1

αiαjy
(i)y(j)x(i) · x(j) (10.22)

subject to
n∑

i=1

αiy
(i) = 0 , 0 ≤ αi ≤

C

n
∀i .

Once the optimal α set is obtained, the optimal classifier is then given by

fα(x) = sign

(
n∑

i=1

αiy
(i)(x(i) · x) + b

)
. (10.23)

In addition to (10.18), (10.19), and (10.20), the KKT conditions for the
dual problem (10.22) also include the constraints

αi(y(i)(wT x(i) + b) − 1 + ξi) = 0 , (10.24)

βiξi = 0 , (10.25)

y(i)(wT x(i) + b) − 1 + ξi ≥ 0 , (10.26)
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for all i. Together these equations (10.18)–(10.26) uniquely characterize the
solution to the primal and the dual problems.

From (10.18) we see that the maximal margin hyperplane w can be written
as a linear combination of the training samples

w =
n∑

i=1

αiy
(i)x(i) .

The data points x(i) for which αi �= 0 are called the support vectors, since
w is defined by these points. By the KKT condition (10.24), support vectors
are those points that satisfy y(i)(wT x(i) + b) − 1 + ξi = 0, that is, they lie
at a distance ξi/||w|| on the wrong side of the margin hyperplane. Among
these support vectors, points with ξi = 0 lie on the margin hyperplanes. From
(10.25) and (10.20), points on the margin hyperplanes have 0 < αi < C/n,
while other support points have αi = C/n. From (10.24), we see that any
support points lying on the margin hyperplane (αi > 0, ξi = 0) can be used
to compute the offset b. In real implementations, we typically use an average
of all the solutions for numerical stability.

10.1.6 Kernel Trick

The support vector machine described so far finds a linear boundary in the
input feature space which divides data into two classes. In this subsection, we
extend the ideas of linear SVM to enable the generation of a nonlinear classi-
fication boundary using the kernel trick technique. Kernel trick is a technique
that attempts to implicitly map the original feature space into an enlarged
feature space using a kernel function, and to use a linear classifier to conduct
data classifications in this enlarged space. Generally speaking, linear bound-
aries in the enlarged feature space translate to nonlinear boundaries in the
original feature space, which results in better separations of data sets that are
non-separable by linear boundaries.

Figure 10.3 demonstrates a data set that can not be separated by a linear
SVM without using the kernel trick. Figure 10.3(a) shows a 1-D data set that
consists of two classes. Obviously, this data set is not separable by any linear
boundary. However, if we project the data set into a 3-D space using the
mapping function Φ(x) = [1,

√
2x, x2], we obtain the data distribution shown

in Fig. 10.3(b), where the horizontal and vertical axes correspond to
√

2x and
x2, respectively. In this 3-D space, the projected data set becomes separable
by a linear boundary that is shown by the dot line. The dot line in the 3-D
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Fig. 10.3. A two-class data set that can not be separated by a linear SVM without

using the kernel trick. The two classes of data are depicted by ‘o’ and ‘x’, respectively

space is equivalent to the two threshold (two dot lines) shown in Fig. 10.3(a),
which is obviously a nonlinear boundary in the 1-D space.

The idea of kernel trick is simple. The Lagrange dual function (10.21) has
the form

LD =
n∑

i=1

αi −
1
2

n∑

i=1

n∑

j=1

αiαjy
(i)y(j)x(i) · x(j) ,

and the SVM classifier is given by

fα(x) = sign

(
n∑

i=1

αiy
(i)(x(i) · x) + b

)
.

Note that in these equations, the input feature vectors appear only in the
form of dot products (x(i) · x(j)). This is a remarkable property because it
means that we do not need to care about individual components of the input
vectors, and that all we need to know is dot products between the input
vectors. Assume that we want to enlarge the original feature space by mapping
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the data into some high dimensional (possibly infinite dimensional) Euclidean
space N using a mapping function Φ : R

d → N . In the enlarged feature
space N , because the SVM depends on the data only through dot products
Φ(x(i)) · Φ(x(j)), if there is a ”kernel function” K such that K(x(i),x(j)) =
Φ(x(i)) ·Φ(x(j)), then we will only need to use K in the computation, and will
never need to explicitly know what Φ is. Using this kernel trick, we obtain the
nonlinear SVM as follows:

fα(x) = sign

(
n∑

i=1

αiy
(i)Φ(x(i)) · Φ(x) + b

)

= sign

(
n∑

i=1

αiy
(i)K(x(i),x) + b

)
. (10.27)

The concept of kernel trick can be illustrated by a simple example. Con-
sider a feature space with two inputs x = [x1, x2]. Applying the degree-2
polynomial kernel K(x,x′) = (1 + x · x′)2 to this feature space yields [83]

K(x,x′) = (1 + x · x′)2

= (1 + x1x
′
1 + x2x

′
2)

2

= 1 + 2x1x
′
1 + 2x2x

′
2 + (x1x

′
1)

2 + (x2x
′
2)

2 + 2x1x
′
1x2x

′
2 .

If we choose the mapping function Φ(x) as

Φ(x) = [1,
√

2x1,
√

2x2, x
2
1, x

2
2,
√

2x1x2]T , (10.28)

which is the function that maps the two dimensional feature space into a six
dimensional one, then

K(x,x′) = Φ(x) · Φ(x′) . (10.29)

What this example reveals is that the degree-2 polynomial kernel function
serves to map the original two dimensional feature space into a six dimensional
one, and to conduct dot products in the six dimensional feature space without
the need to explicitly compute Φ(x) for each input data. As the SVM depends
on the data only through dot products, for the purpose of space enlargement,
all we need to know is a kernel function K(x,x′) = Φ(x) · Φ(x′). Once we
attain the kernel function, we no longer need to explicitly map the original
feature space into a high dimensional one, and in fact, we do not even need
to know what the mapping function Φ(x) is. Therefore, using kernel trick, we
can generalize the linear SVM to a nonlinear one with a minimal change in
the framework and a minimal computational cost.
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Here, we list three popular kernel functions that have been widely used in
the SVM literature:

Degree-d polynomial: K(x,x′) = (1 + x · x′)d.
Radial basis: K(x,x′) = exp

(
− ||x−x′||2

c

)
.

Neural network: K(x,x′) = tanh(κ1x · x′ + κ2).

10.1.7 SVM Training

The goal of SVM training is to obtain an optimal set of Lagrangian multi-
pliers α that maximize the dual objective function LD(α) in (10.22). This is
a typical quadratic optimization problem that can be solved using quadratic
programming (QP) algorithms. However, the quadratic form for SVMs in-
volves a matrix that consists of as many elements as the square of the number
of training examples, and this immense size makes many standard QP tech-
niques unapplicable.

To solve the scalability problem of standard QP techniques, there have
been research studies that strive to break a large QP problem into a series
of smaller QP subproblems, and to solve each QP subproblem using some
standard QP techniques [84, 85]. In this subsection, we describe the Sequen-
tial Minimal Optimization (SMO) method that attempts to decompose the
SVM QP problem into the smallest possible QP subproblem, and to solve
the smallest subproblem analytically at every step [86]. For the SVM problem
setting, the smallest possible QP subproblem involves two Lagrange multipli-
ers because the Lagrange multipliers must obey a linear equality constraint∑

i αiy
(i) = 0. At each step, SMO picks two Lagrange multipliers according

to some heuristical rules, optimizes the two multipliers jointly, and updates
the SVM to reflect the the optimal values.

Compared to other SVM training algorithms in the literature, SMO has
much better scaling properties because it completely avoids matrix compu-
tation and storage by decomposing the SVM QP problem into the smallest
possible QP subproblems. SMO is also faster and easier to implement because
it solves the smallest QP subproblems analytically, rather than invoking an
entire iterative QP numerical routine at each step. With the SMO approach,
even though more optimization subproblems need to be solved during the
course of the optimization, each subproblem is so fast that the overall QP
problem can be solved quickly without any scalability problems.

There are three components of SMO: an analytic method to jointly opti-
mize two Lagrange multipliers, heuristics for choosing pairs of multipliers to
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optimize, and a method for computing the offset b. In the remaining part of
this subsection, we describe each of these components in details.

Jointly Optimizing Two Lagrange Multipliers

This is the smallest possible QP subproblem for solving the overall SVM QP
problem. The KKT conditions which are the necessary and sufficient condi-
tions for a point α to be the solution to (10.22) are

αi = 0 ⇒ ξi = 0, y(i)(wT x(i) + b) ≥ 1, (10.30)

0 < αi <
C

n
⇒ ξi = 0, y(i)(wT x(i) + b) = 1, (10.31)

αi =
C

n
⇒ ξi �= 0, y(i)(wT x(i) + b) ≤ 1, (10.32)

n∑

i=1

αiy
(i) = 0 . (10.33)

The KKT conditions (10.30), (10.31), and (10.32) correspond to the points
that are correctly classified, on the margin hyperplanes, and on the wrong side
of the margin hyperplanes, respectively. These KKT conditions can be evalu-
ated one example at a time, and the dual objective function (10.22) reaches
its maximum when every αi obeys these KKT conditions. For convenience,
we denote the first, second Lagrange multipliers by α1, α2, respectively.

Given two Lagrange multipliers α1 and α2, the strategy used by SMO to
jointly optimize α1 and α2 consists of the following steps:

1. Compute the unconstrained optimal values for α1, α2 first.
2. Compute the bounds that make the two multipliers obey all the KKT

conditions.
3. Compute the constrained optimal values for α1, α2 by clipping the un-

constrained optimal values with the bounds.

To compute the unconstrained optimal values for α1, α2, we need to first
express the dual objective function LD(α) as a function of α1, α2. Let kij =
K(x(i),x(j)), vi =

∑n
j=3 y(j)αjkij , and s = y(1)y(2). Then LD(α) can be

re-written as follows

LD(α1, α2) =
n∑

i=1

αi −
1
2

n∑

i=1

n∑

j=1

αiαjy
(i)y(j)kij

= α1 + α2 −
1
2
k11α

2
1 −

1
2
k22α

2
2 − sk12α1α2

−y(1)v1α1 − y(2)v2α2 + Lconst , (10.34)
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where Lconst =
∑n

i=3 αi − 1
2

∑n
i=3

∑n
j=3 αiαjy

(i)y(j)kij .
Since α1 = γ − sα2 (see the derivations of (10.39) and (10.40) below), we

can rewrite LD(α) as a function of α2 as follows

LD(α2) = γ − sα2 + α2 −
1
2
k11(γ − sα2)2 −

1
2
k22α2 − sk12(γ − sα2)α2

−y(1)v1(γ − sα2) − y(2)v2α2 + Lconst

= γ − sα2 + α2 −
1
2
k11γ

2 + k11sγα2 −
1
2
k11α

2
2 −

1
2
k22α

2
2

−sk12γα2 + k12α
2
2 − y(1)v1γ + y(1)v1sα2 − y(2)v2α2 + Lconst

(10.35)

The first derivative of LD with respect to α2 is

∂LD

∂α2
= −s+1+sk11(γ−sα2)−k22α2 +k12α2−sk12(γ−sα2)+y(2)(v1−v2) ,

(10.36)
and the second derivative of LD with respect to α2 is

∂2LD

∂α2
2

= 2k12 − k11 − k22 = η . (10.37)

Let Ei be the error on the i’th training example: Ei = (wold ·x(i)+b)−y(i).
One can verify that the following equality holds (see Problem 10.3 at the end
of this chapter)

αnew
2 = αold

2 − y(2)(E1 − E2)
η

. (10.38)

This is the equation that gives the unconstrained optimal value for the La-
grange multiplier α2.

Next, we need to find the bound for α2 to obey all the KKT conditions.
The bound constraint (10.31) requires that the Lagrange multipliers lie within
a box, and the linear equality constraint (10.33) requires that they lie one a
diagonal line (see Fig. 10.4). Let γ = −

∑n
i=3 αiy

(i), then

α1y
(1) + α2y

(2) +
n∑

i=3

αiy
(i) = 0 ⇒ α1y

(1) + α2y
(2) = γ . (10.39)

Since y(i) ∈ {1,−1}, and we have set s = y(1)y(2), (10.39) can be rewritten as

α1 + sα2 = γ . (10.40)

Note that γ does not change before and after optimization, and hence
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Fig. 10.4. Two cases of joint optimization of α1 and α2
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αold
1 + sαold

2 = γ . (10.41)

The end points of the diagonal line segment can be expressed quite simply in
terms of α2. There are two cases to consider:

1. y(1) �= y(2) (see Fig. 10.4(a)). Then α1 − α2 = αold
1 − αold

2 = γ. The lower
and higher end points expressed in terms of α2 are

L = max(0, −γ) = max(0, αold
2 − αold

1 ) , (10.42)

H = min
(

C

n
,

C

n
− γ

)
= min

(
C

n
,

C

n
+ αold

2 − αold
1

)
. (10.43)

2. y(1) = y(2) (see Fig. 10.4(b)). Then α1 + α2 = αold
1 + αold

2 = γ. The lower
and higher end points expressed in terms of α2 are

L = max
(

0, γ − C

n

)
= max

(
0, αold

1 + αold
2 − C

n

)
, (10.44)

H = min
(

C

n
, γ

)
= min

(
C

n
, αold

1 + αold
2

)
. (10.45)

Using the bounds derived for the above two cases, we attain the constrained
optimal value for α2 as follows:

αnew,clipped
2 =

⎧
⎪⎨

⎪⎩

H, if αnew
2 ≥ H ,

αnew
2 , if L < αnew

2 < H ,

L, if αnew
2 ≤ L .

(10.46)

Using αnew,clipped
2 , the constrained optimal value for α1 is computed as

αnew
1 = αold

1 + s(αold
2 − αnew,clipped

2 ) , (10.47)

where s = y(1)y(2).

Heuristics for Choosing Multipliers

The SMO algorithm is based on the evaluation of the KKT conditions. When
every multiplier satisfies the KKT conditions of the problem, the algorithm
terminates. To speed up the convergence, SMO uses two heuristics to choose
pairs of Lagrange multipliers to jointly optimize. The first heuristic provides
the outer loop of the SMO algorithm. The outer loop of the algorithm first
iterates over the entire set of training examples to decide whether an example
violates the KKT conditions. If it does, then that example is chosen for im-
mediate optimization. A second example is chosen using the second heuristic,
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and the two multipliers are jointly optimized. The SVM is then updated using
these two new multiplier values, and the outer loop resumes looking for KKT
violators.

After one pass through the entire training set, the outer loop switches to
the second mode in which it only iterates over those examples that reside on
the margin hyperplanes, i.e. the non-bound examples whose Lagrange multi-
pliers are within the open interval (0, C

n ). Again, each non-bound example is
checked against the KKT conditions, and violating examples are chosen for
immediate optimization and update. The outer loop makes repeated passes
over the non-bound examples until they all obey the KKT conditions within
ε. After that, the outer loop switches back to the first mode in which it goes
over the entire training set again. The outer loop keeps alternating between
the entire training set and the non-bound set until all the multipliers obey
the KKT conditions within ε. At that point, the algorithm terminates.

Once a first Lagrange multiplier is chosen, SMO uses the second heuristic
to choose the second multiplier. The second heuristic attempts to maximizing
the step size that can be taken during the joint optimization. Equation (10.38)
is used at this step. The goal is to choose the maximum possible step size by
having the largest value of ||E1 − E2|| in (10.38). SMO keeps a cached error
value E for every non-bound example in the training set. If E1 is positive,
then the example with the minimum error E2 is chosen. If E1 is negative,
then the example with the largest error E2 is chosen.

There are cases where SMO can not make positive progress using the
second heuristic described above. For example, positive progress can not be
made if the first and second training examples share the same input vector x.
To avoid this problem, SMO uses a hierarchy of choices in choosing the second
multiplier. If there is no positive progress, then SMO iterates through the non-
bound example starting at a random position, searching for a second example
that can make positive progress. If none of the non-bound example makes
positive progress, then the algorithm starts at a random position and iterates
through the entire training set until an example is found that makes positive
progress. The randomness in choosing the starting position is to avoid bias
towards examples stored at the beginning of the training set. In very extreme
degenerative cases where none of the examples will make an adequate second
example, SMO will skip the first multiplier and start with another multiplier.
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Updating Offset b

After each optimization step, we need to re-evaluate the offset b so that the
KKT conditions are fulfilled for both optimized examples.

Let u1 be the SVM output for the training sample x(1) with the old α1

and α2:

u1 = wold · x(1) + bold

= αold
1 y(i)k11 + αold

2 y(2)k12 +
n∑

j=3

αjy
(j)k1j + bold . (10.48)

Since
E1 = (wold · x(1) + bold) − y(1) ,

we have
u1 − E1 = y(1) . (10.49)

If 0 < αnew
1 < C

n , then x(1) will lie on a margin hyperplane, and hence the
SVM output for x(1) will be y(1). Therefore,

y(1) = αnew
1 y(1)k11 + αnew

2 y(2)k12 +
n∑

j=3

αjy
(j)k1j + b1 . (10.50)

Substituting (10.48) and (10.50) into (10.49), we get

b1 = E1 + bold + y(1)(αnew
1 − αold

1 )k11 + y(2)(αnew
2 − αold

2 )k12 . (10.51)

Similarly, we can obtain the equation for b2 when 0 < αnew
2 < C

n

b2 = E2 + bold + y(1)(αnew
1 − αold

1 )k11 + y(2)(αnew
2 − αold

2 )k12 . (10.52)

When both b1 and b2 are valid, they are equal. When both new Lagrange
multipliers are at bound (i.e. αnew

1 = αnew
2 = C

n , ξ1 > 0, ξ2 > 0), and
L �= H, then any value in the closed interval [b1, b2] is consistent with the
KKT conditions. In this case, SMO chooses bnew = b1+b2

2 to be the new
offset. If one multiplier is at bound and the other is not, then bnew is set to
the offset value computed using the non-bound multiplier.

A cached error value E is kept for every example whose Lagrange multiplier
is neither zero nor C

n . When a Lagrange multiplier is non-bound and is involved
in a joint optimization, its cached error becomes zero. The stored errors of
other non-bound multipliers not involved in joint optimization are updated
as follows:
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Enew
j − Eold

j = unew
j − uold

j , (10.53)

where unew
j and uold

j are the new and old SVM output values for the j’th
training example, and this change is due to the change in α1, α2, and b.
Therefore, we can compute unew

j − uold
j as follows:

unew
j −uold

j = y(1)αnew
1 k1j+y(2)αnew

2 k2j+bnew−y(1)αold
1 k1j−y(2)αold

2 k2j−bold .

(10.54)
Substituting (10.54) into (10.53), we have

Enew
j = Eold

j +y(1)(αnew
1 −αold

1 )k1j+y(2)(αnew
2 −αold

2 )k2j+bnew−bold . (10.55)

10.1.8 Further Discussions

As described in Sect. 10.1.3, the SVM for non-separable case can be casted as
the following optimization problem:

min
w,b,ξi

1
2
wT w +

C

n

n∑

i=1

ξi , (10.56)

subject to y(i)(wT x(i) + b) ≥ 1 − ξi , ξi ≥ 0 ∀i .

It can be easily verified that the above optimization problem is equivalent to
minimizing the following function L(w) (see Problem 10.4 at the end of the
chapter):

min
w

L(w) =
∑

i

|1 − y(i)f(x(i))|+ +
1
2
wT w , (10.57)

where f(x(i)) = wT x(i) + b, |x|+ equals x if x > 0, and equals 0 otherwise.
The first and second terms in L(w) can be considered as a loss function and
a regularization term, respectively, which is a familiar paradigm in function
estimations. The loss function |1− y(i)f(x(i))|+ is called hinge loss, and takes
the form shown in Fig. 10.5. This loss function has the characteristics of giving
zero penalty to data points that are correctly classified (i.e. reside at the right
side of the margin hyperplanes), and assigning penalties to data points if they
reside at the wrong side of the margin hyperplanes. The penalties are propor-
tional to the distance on the wrong side of the margin hyperplanes. On the
other hand, the regularization term makes explicit the size constraint on the
model parameters. When there are many correlated variables in constructing
a classification model, their coefficients can become poorly determined, and
exhibit high variances. A wildly large positive coefficient on one variable can



256 10 Max-Margin Classifications

0 1 2 3-1-2-3

0

1

2

3

6 

5 

4 

)(xyf

+− |)(1| xyf

Fig. 10.5. The hinge loss function used by SVMs

be canceled by a large negative coefficient on its correlated cousin. By impos-
ing a size constraint on the coefficients, this phenomenon is prevented from
occurring.

Because L(w) contains the non-smooth term |1 − y(i)f(x(i))|+, its mini-
mization is a non-trivial problem. A common solution is to convert it into a
constrained optimization problem, such as the one same as (10.56), and use
the SMO algorithm described in this section to compute its solution. It is
noteworthy that there are research efforts that strive to approximate the non-
smooth hinge loss function with a smooth function, so that L(w) becomes
differentiable, and standard unconstrained optimization methods such as the
gradient descent algorithm can be used to compute its solution (see Problem
10.5 at the end of the chapter).
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10.2 Maximum Margin Markov Networks

For single-label binary classification problems, SVMs provide an effective
method of learning a maximum-margin decision boundary. For multi-label,
multi-class classification problems, graphical models offer the most power-
ful tool for learning a joint probabilistic model over the set of variables (see
Chap. 4 for detailed descriptions). Max-Margin Markov Networks (M3-nets)
strives to get the best of the two approaches by incorporating the max-margin
concept into the framework of conditional random fields [81].

10.2.1 Primal and Dual Problems

Let x = [x1, x2, . . . , xm] be the feature vector of a sequence of m instances,
and y = [y1, y2, . . . , ym] be the vector of labels of the m instances, where yi ∈
{l1, l2, . . . , lk}. For simplicity of descriptions, we assume that the sequences
x and y have the same length. From Sect. 9.4, conditional random fields
generally define the conditional probability P (y|x) of a label sequence y given
an observation sequence x using the following exponential form:

Pλ(y|x) =
1

Zλ(x)
exp

(
l∑

i=1

λifi(x,y)

)
, (10.58)

where Zλ(X) is the normalizing factor that ensures
∑

y Pλ(y|x) = 1, λi is a
model parameter, and fi(x,y) is a feature function (often binary-valued) that
connects certain important features with a certain class label. Now define the
feature vector F(x,y) as

F(x,y) = [f1(x,y), f2(x,y), . . . , fl(x,y)] , (10.59)

we can re-write (10.58) as

Pλ(y|x) ∝ exp
(
wT F(x,y)

)
, (10.60)

where w = [λ1, λ2, . . . , λl]. With conditional random fields, the parameter
set w is estimated by maximizing the log-likelihood of the model during the
training stage. Here, instead of using the maximum likelihood estimate, we
want to exploit a loss function that embodies the max-margin concept. In
general, we are not interested in the exact form of P (y|x). We are rather
interested in the classifier

fw(x) = arg max
y

wT F(x,y) , (10.61)
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and with what confidence the classification is done.
A suitable notion of margin in this case is the difference between the value

wT F(x, t(x)) for the true label t(x) of x and the value wT F(x,y) for a wrong
label y �= t(x). If the data is linearly separable, in analogy to the canonical
form (10.10) for SVMs, we can rescale w so that the minimal distance between
the above two values is 1:

wT F(x, t(x)) − wT F(x,y) ≥ 1 , ∀y �= t(x), x ∈ S . (10.62)

Again, for non-separable data, we introduce non-negative slack variables ξx,
one for each training sample. We also define

∆Fx(y) = F(x, t(x)) − F(x,y)

for brevity of notation. The inequality (10.62) then becomes:

wT ∆Fx(y) ≥ 1 − ξx , ∀y �= t(x), x ∈ S . (10.63)

The constraint (10.63) stipulates that the margin between the value for
the true label and the value for a wrong label must be more than 1. For
multi-label, multi-class classification problems, however, the loss function is
usually not the simple 0 − 1 loss I(arg maxy wT F(x,y) = t(x)) , but rather
the per-label loss, which is the proportion of incorrect individual labels in y.
Therefore, it makes more sense to use a margin that is proportional to the
number of wrong labels in y

∆tx(y) =
m∑

i=1

I(yi �= t(x)i) , (10.64)

where t(x)i denotes the i’th element of the label vector t(x). Similar to SVMs,
using the margin (10.64), the term C

n

∑
x∈S ξx will then correspond to an

upper bound of the empirical risk.
With all the above preparations, the maximum margin Markov network

becomes the following quadratic optimization problem:

min
w,ξ

1
2
wT w +

C

n

∑

x∈S
ξx , (10.65)

subject to wT ∆Fx(y) ≥ ∆tx(y) − ξx , x ∈ S , ∀y .

Note that the constraints in (10.65) include the case y = t(y). Again, similar
to the derivation of the SVM dual problem (see Sect. 10.1.5), we can derive
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Fig. 10.6. Chain graph that contains only the pairwise cliques

the dual objective function of this problem by introducing the Lagrangian
multipliers, constructing the Lagrangian function, minimizing the Lagrangian
function with respect to w and ξx, and then substituting the solution back
to the Lagrangian function. Because there is one constraint for each pair of
x ∈ S and y, we need to introduce a |S|×|y| number of Lagrangian multipliers
αx(y). The dual problem of M3-nets is very similar to that of SVMs, which
is shown as follows:

max
αx(y)

∑

x,y

αx(y)∆tx(y) − 1
2

∑

x,y

∑

x′,y′

αx(y)αx′(y′)(∆Fx(y) · ∆Fx′(y′))

subject to
∑

y

αx(y) =
C

n
,∀x ∈ S , αx(y) ≥ 0 ,∀x ∈ S,∀y . (10.66)

Unfortunately, the number of constraints in (10.65) and (10.66) are expo-
nential in the number of labels l, and both the primal and the dual problems
are untractable in their original forms.

10.2.2 Factorizing Dual Problem

We can explore the sparsity of interactions within the network to factorize the
original problem. The factorized problem can generally reduce the number of
parameters to be estimated from an exponential order to a polynomial one,
making the untractable problem tractable.

For simplicity of presentations, we focus on the chain graph that contains
only the pairwise cliques (see Fig. 10.6). With such a graph, feature functions
fi(x,y) in (10.58) becomes



260 10 Max-Margin Classifications

fi(x,y) = fi(x, yi, yi+1) . (10.67)

We further define the feature vector F(x, yi, yi+1) as follows:

F(x, yi, yi+1) = [f1(x, yi, yi+1) , . . . , fl(x, yi, yi+1)] ∈ R
l . (10.68)

Using the above notations, the joint feature vector defined in (10.59) becomes

F(x,y) =
∑

(yi,yi+1)∈E

F(x, yi, yi+1) , (10.69)

where E is the edge set of the graph, which consists of only pairwise edges.
The key insight to the M3-net is that the variables (Lagrangian multipli-

ers) αx(y) in the dual problem 10.66 can be interpreted as a density function
over y conditioned on x, because they satisfy the constraints

∑
y αx(y) = C

n

and αx(y) ≥ 0. The dual objective function is a function of expectations of
∆tx(y) and ∆Fx(y) with respect to αx(y). Since both ∆tx(y) =

∑
i ∆tx(yi)

and ∆Fx(y) =
∑

(i,j) ∆Fx(yi, yj) are sums of functions over nodes and edges,
we can factorize the dual variables αx(y) in exactly the same way as ∆tx(y)
and ∆Fx(y). We define the marginal dual variables as follows:

µx(yi, yj) =
∑

y∼[yi,yj ]

αx(y) , ∀(i, j) ∈ E, ∀yi, yj , ∀x , (10.70)

µx(yi) =
∑

y∼[yi]

αx(y) , ∀i, ∀yi, ∀x , (10.71)

where E is the edge set of the graph, and y ∼ [yi, yj ] denotes a full assignment
y consistent with partial assignment yi, yj .

Using the above marginal dual variables, we can re-write the first and
second terms of the dual objective function as follows:

∑

x,y

αx(y)∆tx(y) =
∑

x

∑

y

l∑

i=1

αx(y)∆tx(yi)

=
∑

x

∑

yi

∆tx(yi)
∑

y∼[yi]

αx(y)

=
∑

x

∑

yi

µx(yi)∆tx(yi) . (10.72)

∑

x,y

∑

x′,y′

αx(y)αx′(y′)(∆Fx(y) · ∆Fx′(y′))
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=
∑

x,x′

∑

y,y′

αx(y)αx′(y′)
∑

(yi,yi+1)∈E

∑

(y′
i,y

′
i+1)∈E

(∆F(x, yi, yi+1) · ∆F(x′, yi′ , yi′+1))

=
∑

x,x′

∑

(yi,yi+1)∈E

∑

(y′
i,y

′
i+1)∈E

(∆F(x, yi, yi+1) · ∆F(x′, yi′ , yi′+1))

·

⎛

⎝
∑

y∼[yi,yi+1]

αx(y)

⎞

⎠

⎛

⎝
∑

y′∼[yi′ ,yi′+1]

αx′(y′)

⎞

⎠

=
∑

x,x′

∑

(yi,yi+1)∈E

∑

(y′
i,y

′
i+1)∈E

µx(yi, yi+1)µx′(yi′ , yi′+1)

·(∆F(x, yi, yi+1) · ∆F(x′, yi′ , yi′+1)) . (10.73)

Obviously, (10.72) and (10.73) contain only a polynomial number of dual vari-
ables (Lagrangian multipliers) µx(yi) and µx(yi, yi+1). Therefore, the above
two factorizations have transformed the exponential summation into a poly-
nomial one, and have turned the untractable problem into a tractable one.

To produce an equivalent quadratic optimization problem, we must also
ensure that the dual variables µx(yi), µx(yi, yi+1) are the marginals resulting
from a legal density α(y). In particular, we must enforce consistency between
the pairwise and singleton marginals:

∑

yi

µx(yi, yj) = µx(yj) , ∀yj , ∀(i, j) ∈ E , ∀x . (10.74)

Using the above definitions and notations, we obtain the following factored
dual problem that is equivalent to the original dual problem:

max
µx(yi),

µx(yi,yi+1)

∑

x

∑

yi

µx(yi)∆tx(yi)

−1
2

∑

x,x′

∑

(yi,yi+1)∈E

(y′
i,y′

i+1)∈E

µx(yi, yi+1)µx′(yi′ , yi′+1)(∆F(x, yi, yi+1) · ∆F(x′, yi′ , yi′+1)),

subject to
∑

yi

µx(yi, yj) = µx(yj) ,
∑

yi

µx(yi) =
C

n
, µx(yi, yj) ≥ 0 . (10.75)

Similar to SVMs, the solution to the factorized dual problem takes the form
of

w =
∑

x

∑

(yi,yi+1)∈E

µx(yi, yi+1)∆F(x, yi, yi+1) , (10.76)

and this formulation can also make use of the kernel trick as everything is
expressed in terms of dot products.
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10.2.3 General Graphs and Learning Algorithm

In the proceeding subsections, we have derived the framework of the Maximum
Margin Markov Networks using the chain graph and pairwise cliques. It is
noteworthy that the derived framework applies to arbitrary graph structures.
More specifically, if the graph is triangulated, then we can easily create the
factorized dual problem by defining the clique marginals with the consistency
conditions. If the graph is non-triangulated, then we have to first triangulate
it and then obtain an equivalent optimization problem. In this case, we need
to add to the problem a number of new constraints that is exponential in the
size of cliques.

In [81], Taskar, et al. presented an extended version of SMO as the learning
algorithm for M3-nets (see Sect. 10.1.7 for detailed descriptions). They also
derived a generalization bound on the expected risk for their max-margin
approach.

10.2.4 Max-Margin Networks vs. Other Graphical Models

In Sect. 9.3, we discussed pros and cons of generative and discriminative graph-
ical models. We pointed out that, for the task of data classifications, what we
really need to compare is the scores of the true and wrong labels for the same
training example xk, and we want the score for the true label as large as pos-
sible, and scores for wrong labels as small as possible. The loss function used
by discriminative models partially reflects this principle while the one used
by generative models does not.

In fact, the M3-nets presented in this section is one of the few graphical
models that explicitly use the above principle as its loss function. The loss
function defined in (10.62) mandates that the minimal distance between the
score assigned to the true label t(x) of x and the score assigned to a wrong
label ∀y �= t(x) must be 1.

The advantage of using the loss function (10.62) can be illustrated using
Fig. 10.7. In this figure, the horizontal axis represents all possible labels for a
specific training example xk, while the vertical axis represents the score given
to each label by a learning model under discussion. Assume that at the initial
stage of the training process, the model gives randomized, relatively uniform
scores to all possible labels of the training example xk (see Fig. 10.7(a)). The
ideal model we want to construct is the one that assigns the highest score to
the true label t(xk) of xk, and penalizes wrong labels ∀y �= t(xk) by assigning
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Fig. 10.7. An intuitive illustration of the differences between max-margin networks

and other graphical models. In each of the figures, the horizontal axis represents all

possible labels for a specific training example xk, and the vertical axis represents

the score given to each label by a learning model under discussion. y∗ is the true

label of the training example xk

low scores to them (see Fig. 10.7(b)). There is another possible scenario where
the training process produces a model that assigns a high score to the true
label t(xk) of xk, but assigns even a higher score to some labels yj �= t(xk)
(see Fig. 10.7(c)).

Obviously, M3-nets have the lowest probability of generating a model
shown in Fig. 10.7(c), because the loss function adopted by M3-nets penalizes
such a model. Discriminative graphical models are inferior to M3-nets because
their loss functions do not completely reflect the principle discussed above.
Among the three types of approaches, generative models have the highest
probability of getting trapped into the scenario shown in Fig. 10.7(c) because
their loss functions only intend to increase the score of the true label t(xk) of
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xk, but do not compare it with scores of wrong labels for the same example
xk.

The above illustration provides us with an intuitive insight into the reasons
why M3-nets are superior to other graphical models, and why discriminative
models are more likely to attain a better model than generative models.

Problems

10.1. Let x,y ∈ Rd. What is the dimension of the space implied by the
polynomial kernel k(x,y) = (xT y + 1)n?

10.2. Show that the distance between the origin and the hyperplane wT x+b =
0 is |b|/‖w‖.

10.3. SMO algorithm. Let Ei be the error on the i’th training example: Ei =
(wold · x(i) + b) − y(i). Prove that the following equality holds

αnew
2 = αold

2 − y(2)(E1 − E2)
η

.

10.4. Hinge loss. Given the set of training data that consists of two classes S =
{xi, yi}n

i=1 , yi ∈ {−1, 1}, show that the following two optimization problems
are equivalent:

(a)

min
w

∑

i

ξi +
1
2
‖w‖2 ,

subject to yiwT xi ≥ 1 − ξi , ξi ≥ 0 ∀i .

(b)

min
w

∑

i

|1 − yiwT xi|+ +
1
2
‖w‖2 ,

where |x|+ equals x if x > 0, and equals 0 otherwise. The loss function |1 −
yif(xi)|+ is called hinge loss.

10.5. Smoothed hinge loss. The hinge loss (Problem 10.4) used by SVM is not
a smooth function, which introduces difficulty for optimization. A smoothed
approximation to hinge loss is often used so that unconstrained optimization
methods can be used to solve the problem. Show that the following loss func-
tion with γ > 0 is an upper bound of hinge loss and converges to hinge loss
when γ → 0
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L(y, f(x)) = γ log
(

1 + exp
(

1
γ

(1 − yf(x)
))

.

10.6. Let L(y, x) be a convex cost function over x. The conjugate function L̂

of L is defined as
L̂(y, θ) = max

x
θx − L(y, x) ,

where θ is the parameter of L̂. Given the set of training data that consists
of two classes S = {xi, yi}n

i=1 , yi ∈ {−1, 1}, show that the following two
optimization problems are equivalent:

(a)

min
w

n∑

i=1

L(yi,wT xi) +
1
2
‖w‖2

(b)

min
α

n∑

i=1

L̂(yi,−αi) +
1
2
αT Kα

where K = [Kij ] is a kernel matrix, and Kij = xT
i xj . Furthermore, the

solutions of (a) and (b) are related by

w =
n∑

i=1

αixi .

[Hint: Use ξi = wT xi as constraints and apply the Lagrange multiplier method
to (a)]

10.7. Kernel CRF. In problem 9.7, we can define a feature mapping
function Φ(x, y) = [f1(x, y), · · · , fn(x, y)]T . Show that the inner products
〈Φ(xi, yi), Φ(xj , yj)〉 among data points are sufficient to uniquely specify the
problem (i.e., the actual value of Φ(x, y) is not necessary). Compare this with
the M3 network.

10.8. Given the set of training data S = {xi,yi}n
i=1 , yi = [yi1, yi2, . . . , yim],

yij ∈ {l1, l2, . . . , lk}, show that the optimization problem of M3 network is
equivalent to

min
w

n∑

i=1

max
y

(∆txi
(y) + wT Φ(xi,y) − wT Φ(xi,yi)) +

λ

2
‖w‖2 .

10.9. Download a hand written digit data set from http://
www.ics.uci.edu/mlearn/databases/optdigits/readme.txt. Use LIBSVM
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(http://www.csie.ntu.edu.tw/cjlin/libsvm/) to train a SVM classifier for
digit classification. Use 80% of the data for training and 20% for evaluation.
Try linear kernel x · x′ and radial basis function (RBF) kernel. Select proper
C in (10.15) and radius of RBF using 5-fold cross validation on the training
data.

10.10. For M3 network, show that the consistency constraints in (10.74) are
sufficient to guarantee that the marginal dual variables µ are from valid dual
variable α if the graph is tree-structured, i.e., valid α can uniquely determined
by the marginal dual variables.

10.11. Consider a M3 network of 3 nodes with pairwise cliques, each node is
binary valued. Consider following hypothetical assignment of marginal dual
variables:

µ1(1) = µ2(1) = µ3(1) = 0.5

µ12(0, 1) = µ12(1, 0) = 0.5

µ23(0, 1) = µ23(1, 0) = 0.5

µ31(0, 1) = µ31(1, 0) = 0.5

Verify that this assignment satisfies the consistency constraints in (10.74).
Prove that this assignment of marginal dual variables cannot come from any
valid dual variable α.



A

Appendix

In this appendix, we give the solution to the weighted BiNMF. Assume that
each data point has the weight γi, the weighted sum of squared errors is:

J =
1
2

∑

i

γi(Xi − XWV T
i )T (Xi − XWV T

i )

=
1
2
trace((X − XWVT )Γ(X − XWVT ))T

=
1
2
trace((XΓ1/2 − XΓ1/2W′V′T )(XΓ1/2 − XΓ1/2W′V′T )T )

=
1
2
trace((XΓ1/2 − XΓ1/2W′V′T )T (XΓ1/2 − XΓ1/2W′V′T ))

=
1
2
trace((I − W′V′T )T Γ1/2KΓ1/2(I − W′V′T ))

=
1
2
trace((I − W′V′T )T K′(I − W′V′T )) , (A.1)

where Γ is the diagonal matrix with γi as its diagonal elements,
W′ = Γ−1/2W, V′ = Γ1/2V and K′ = Γ1/2KΓ1/2.

Notice that the above equation has the same form as (3.40) in Section 3.3.2,
so the same algorithm can be used to find the solution.
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a prior probability, 141

active feature, 215

Affine motion model, 136

Affine transformation, 137

annealing schedule, 127

approximate feature selection algorithm,

216

approximate inference, 189

average weight, 40, 44

Barker’s Algorithm, 106

baseball highlight detection, 167, 217

Baum-Welch algorithm, 162, 164

Bayesian inference, 140

Bayesian network, 74

belief network, 74

bilinear NMF model, 55

camera motion, 223

candidate acceptance probability, 105

candidate acceptance rate, 105

candidate generating matrix, 105

capacity, 238

clique, 77, 117

cocktail party problem, 16

color distribution, 222

communication, 88

communication class, 88

conditional entropy, 206

conditional random field (CRF), 213

configuration space, 115

constraint equation, 205

coordinate-wise ascent method, 209

data clustering, 37

deductive learning, 1

dense motion layer computation, 139

detailed balance, 91

dimension reduction, 15

directed graph, 74, 179

discrete-time stochastic process, 81

discriminative model, 5, 201, 210

document weighting scheme, 62

dual function, 207

dual optimization problem, 208

dynamic random field, 123

edge distribution, 223

empirical distribution, 204

empirical risk, 237

energy function, 117

ergodic, 91

expectation-maximization (EM)

algorithm, 162

expected risk, 237
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exponential model, 210

factor graph, 180

feature function, 204, 220

feature selection, 215

feature selection algorithm, 216

forward-backward algorithm, 155

Gaussian mixture model (GMM), 225

generative model, 5, 210

Gibbs distribution, 117

Gibbs sampling, 123, 189

Gibbs-Markov equivalence, 120

global weighting, 62

gradient descent method, 208

hidden Markov model (HMM), 149

hierarchical clustering, 38

hinge loss, 255, 264

HMM training, 160

homogeneous Markov chain, 82

hyperplane, 239

independent component analysis (ICA),

20

inductive learning, 1

initial state, 83

initial state distribution, 83

invariant measure, 92

irreducible, 88

Ising model, 118

iterative scaling algorithm, 209

Jensen’s inequality, 163

junction tree algorithm, 187

K-means clustering, 38

kernel, 58, 66

kernel spectral clustering, 63

kernel trick, 245

KL divergence, 190

Kuhn-Tucker theorem, 208

Kurtosis, 21

Lagrange multiplier method, 206, 244

Lagrangian function, 206

lagrangian multiplier, 206

large number law, 101

likelihood, 141

local characteristic of MRF, 116

local specification of MRF, 116

local weighting, 62

locally linear embedding (LLE), 26

log-likelihood, 214

loss function, 237

manifold, 26

margin, 241

Markov chain, 81

Markov chain Monte Carlo (MCMC),

104, 189

Markov random field, 74

Markov random field (MRF), 116

max-margin Markov network (M3-net),

236

max-product algorithm, 189

max-sum algorithm, 189

maximum a posterior estimation

(MAP), 139

maximum entropy model, 202

maximum entropy principle, 202

mean field approximation, 190

message passing, 185

Metropolis Algorithm, 105

minimum maximum cut, 41, 45

modeling imperative, 8, 213

multimedia feature fusion, 218

mutual information, 23, 64, 225

n-step transition matrix, 84

negentropy, 22

neighborhood, 116, 126

neighborhood system, 116
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non-negative matrix factorization, 51,

52

non-separable case, 241

normalized cut, 40, 44

normalized cut weighting scheme, 51, 66

null recurrent, 91

page ranking algorithm, 114

partial configuration, 116

partition function, 117

period, 88

Perron-Frobenium Theorem, 97

phase space, 115

player detection, 224

positive recurrent, 91

potential, 117

potential function, 77

primal optimization problem, 208

principal component analysis (PCA), 15

pyramid construction, 142

random field, 115

random walk, 85

ratio cut, 40, 44

Rayleigh Quotient, 44

recurrent, 90

regularization, 255

rejection sampling, 101

risk bound, 238

separable case, 239

sequential minimal optimization (SMO),

248

simulated annealing, 126

single linear NMF model, 52

singular value decomposition (SVD), 16

site space, 115

smoothed hinge loss, 264

sparse motion layer computation, 136

special sound detection, 224

spectral clustering, 39

state space, 126

stationary distribution, 91

statistical sampling and simulation, 100

structural risk minimization, 237

sum-product algorithm, 182

supervised learning, 4

support vector machines (SVMs), 236,

239

SVM dual, 244

temperature, 117, 126

transient, 91

transition matrix, 83

transition probability, 126

undirected graph, 74, 77, 179

unsupervised learning, 4

variational methods, 189

VC confidence, 243

VC dimension, 243

video foreground object segmentation,

134

Viterbi algorithm, 159

whitening, 24




